

About Me

Gene Pang

Software Engineer @ Alluxio, Inc.

Alluxio Open Source PMC Member

Ph.D. from AMPLab @ UC Berkeley

Worked at Google before UC Berkeley

Twitter: @unityxx

Github: @gpang

Outline

- Alluxio Overview
- (2) Alluxio + Spark + Mesos Use Cases
- (3) Using Spark with Alluxio on Mesos
- (4) Deployment with Mesos
- (5) Demo

Data Ecosystem Yesterday

- One Compute Framework
- Single Storage System
- Co-located

Data Ecosystem Today

- Many Compute Frameworks
- Multiple Storage Systems
- Most not co-located

Data Ecosystem Issues

- Each application manage multiple data sources
- Add/Removing data sources require application changes
- Storage optimizations requires application change
- Lower performance due to lack of locality

Data Ecosystem with Alluxio

- Apps only talk to Alluxio
- Simple Add/Remove
- No App Changes
- Memory Performance

Next Gen Analytics with Alluxio

Enterprise

Fastest Growing Big Data Open Source Project

Outline

- (I) Alluxio Overview
- 2 Alluxio + Spark + Mesos Use Cases
- (3) Using Spark with Alluxio on Mesos
- (4) Deployment with Mesos
- (5) Demo

Big Data Case Study - Qunar.Com

Challenge –

Gain end to end view of business with large volume of data for \$5B Travel Site

Oueries were slow / not interactive, resulting in operational inefficiency

Solution -

With Alluxio, 300x improvement in performance

Impact -

Increased revenue from immediate response to user behavior Use case: http://bit.ly/2pDJdrq

Machine Learning Case Study –

SPARK

HDFS

Challenge –

Disparate Data both on-prem and Cloud. Heterogeneous types of data.

Scaling of Exabyte size data. Slow due to disk based approach.

Solution -

Using Alluxio to prevent I/O bottlenecks

Impact -

Orders of magnitude higher performance than before. http://bit.ly/2p18ds3

Outline

- (I) Alluxio Overview
- (2) Alluxio + Spark + Mesos Use Cases
- 3 Using Spark with Alluxio on Mesos
- (4) Deployment with Mesos
- (5) Demo

Sharing Data via Memory

Storage Engine & Execution Engine Same Process

- Two copies of data in memory double the memory used
- Inter-process Sharing Slowed Down by Network / Disk I/O

Sharing Data via Memory

Storage Engine & Execution Engine Different process

- Half the memory used
- Inter-process Sharing Happens at Memory Speed

Storage Engine & Execution Engine Same Process

• Process Crash Requires Network and/or Disk I/O to Re-read Data

Process Crash Requires Network and/or Disk I/O to Re-read Data

Storage Engine & Execution Engine Different process

Storage Engine & Execution Engine Different process

Process Crash Data is Re-read at
Memory Speed

Alluxio Architecture

Alluxio Client

Applications interact with Alluxio via the Alluxio client

- Native Alluxio Filesystem Client
 - Alluxio specific operations like [un]pin, [un]mount, [un]set TTL
- HDFS-Compatible Filesystem Client
 - No code change necessary
- S3 API

Alluxio Master

Master is responsible for managing metadata

- Filesystem namespace metadata
- Blocks / workers metadata

Primary master writes journal for durable operations

Secondary masters replay journal entries

* Alluxio Worker

Worker is responsible for managing block data Worker stores block data on various storage media

HDD, SSD, Memory

Reads and writes data to underlying storage systems

Outline

- (I) Alluxio Overview
- (2) Alluxio + Spark + Mesos Use Cases
- (3) Using Spark with Alluxio on Mesos
- 4 Deployment with Mesos
- (5) Demo

Alluxio on DC/OS

• Alluxio on DC/OS

Alluxio brings

A unified view of data across disparate storage systems

High performance & predictable SLA for analytics workloads

DC/OS makes provisioning infrastructure easy

Automates provisioning, management & elastic scaling

Benefits include:

Faster analytics with Spark and other frameworks

Process data from hybrid cloud storage systems (HDFS, S3, etc)

Outline

- (I) Alluxio Overview
- (2) Alluxio + Spark + Mesos Use Cases
- (3) Using Spark with Alluxio on Mesos
- (4) Deployment with Mesos
- 5 Demo

Demo Environment

Demo Setup

Alluxio 1.5.0

DC/OS 1.9.4

Spark 2.0.2

Amazon EC2 (m3.xlarge)

Results

Conclusion

Easy to use Alluxio with Spark in a Mesos environment

Predictable and improved performance

Easily connect to various storage systems

Thank you!

Gene Pang Software Engineer gene@alluxio.com

Twitter.com/alluxio
Linkedin.com/alluxio