Linux Cryptographic
#Acceleration on an i.MX6

Sean Hudson
Embedded Linux Architect

(ELIn2s

mentor.com/embedded

Android is a trademark of Google Inc. Use of this trademark is subject to Google Permissions.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Qt is a registered trade mark of Digia Plc and/or its subsidiaries. All other trademarks mentioned in this document are trademarks of their respective owners.

Who am 1I?

I am an embedded Linux architect and Member of
Technical Staff at Mentor Graphics. I have worked on
embedded devices since 1996. I started working with
Linux as a hobbyist in 1999 and professionally with
embedded Linux in 2006. In OSS, I have been involved
with the Yocto Project since it's public announcement in
2010, have served on the YP Advisory Board for two
different companies, and am currently a member of the
OpenEmbedded Board.

GM%H%': 2 www.mentor.com/embedded embeclclecl‘

A special word of thanks

Much of the hard work gathering data for this
presentation was done by a co-worker, Wade Farnsworth,
who was unable to attend today.

GM%H%': 3 www.mentor.com/embedded QmDG'Cl(jQCJJ

Outline

About this presentation

A word about Cryptography
Crypto Hardware types

I.MX6 CAAM

Kernel access to HW
Application access to HW

Test methods

Results

Conclusions and final thoughts
Q&A / Discussion

Menpr
Gfdphl('S” 4 www.mentor.com/embedded

embedded

About this presentation

This talk is geared towards using cryptographic hardware
acceleration from user space

— I wont spend a lot of time on kernel internals and drivers
The focus comes from work that we did with the i.MX6
However, much of this is generally applicable

GM%H%': www.mentor.com/embedded embeclcleclu

A word about Cryptography

G

In terms of goals, cryptography is pretty simple ©

— Send a message from one point to another without someone in
the middle being able to read it in a reasonably short, amount of
time

Most cryptographic algorithms rely on asymmetric,
computational complexity to guarantee security

— Brute force attacks should be infeasible in reasonable amounts
of time

— Encryption/decryption should be relatively cheap

In a related way, as the need for computational
complexity has increased, the time to encrypt/decrypt has
also increased, hence the desire for hardware acceleration

Menbr
ra

o) |
v .mentor. bedded l Ided
ph www.mentor.com/embedde

Some more words about Cryptography

Basic encryption usually requires a couple of things:
— A strong algorithm, e.g. AES
— A strong key from a large key space, e.g. random number

Basic encryption enables several, additional features:
— Tamper detection

— Secure storage

— Key exchange

_ Secure identification/authorization

— Secure execution

Strong Cryptography != Strong Security

Menpr
I'Clph . www.mentor.com/embedded

embedded

G

Types of Crypto Hardware

Standalone
— E.g. Smartcards

Instruction set extensions
— Built into primary CPU
— E.g. Via Padlock & Intel AES-NI

Separate co-processors

— Different interconnect flavors

- Separate processors connected by an external bus
- Trusted Computing Module (TPM)
Standard for a separate, specialized processor used to accelerate
Trusted Computing Group (TCG) manages the standard
Found in x86 platforms
- Offload processors
PCIE cards, for example

- Part of an SOC
- 1.MX6 crypto block

GM%H%': www.mentor.com/embedded embeclcleclu

1.MX6 Crypto Hardware

The NXP i.MX6 SoC includes a cryptographic acceleration
and assurance module (CAAM) block, which provides
cryptographic acceleration and offloading hardware.

The CAAM provides :

— HW implementation of cryptographic functions
- Includes several ciphers and hashing algorithms

— Secure memory

— Secure key module

— Cryptographic authentication
— Random-number generation

GM%H%': www.mentor.com/embedded embedded“

Enabling CAAM in the 4.1 kernel

The kernel should have the following options enabled in order
to access the CAAM module:

— CONFIG_CRYPTO_DEV_FSL_CAAM=y

— CONFIG_CRYPTO_DEV_FSL_CAAM_JR=y

— CONFIG_CRYPTO_DEV_FSL_CAAM_RINGSIZE=9

— # CONFIG_CRYPTO_DEV_FSL_CAAM_INTC is not set

— CONFIG_CRYPTO_DEV_FSL_CAAM_CRYPTO_API=y

— CONFIG_CRYPTO_DEV_FSL_CAAM_AHASH_API=y

— CONFIG_CRYPTO_DEV_FSL_CAAM_RNG_API=y

— # CONFIG_CRYPTO_DEV_FSL_CAAM_RNG_TEST is not set
— CONFIG_CRYPTO_DEV_FSL_CAAM_SM=y

— CONFIG_CRYPTO_DEV_FSL_CAAM_SM_SLOTSIZE=7

— # CONFIG_CRYPTO_DEV_FSL_CAAM_SM_TEST is not set
— CONFIG_CRYPTO_DEV_FSL_CAAM_SECVIO=y

— # CONFIG_CRYPTO_DEV_FSL_CAAM_DEBUG is not set

phl('S” www.mentor.com/embedded embeclcleclu

Cryptography in Userspace

Pure SW implementation

— Portable & supports arbitrary algorithms
— Costs CPU cycles

— CPUs aren't optimized for this work

Use CPU instruction extensions

— Makes use of HW acceleration

— Doesn't involve the kernel

— Limited to algs that are support by HW, e.g. AES

Kernel APIs for userspace

Menpr “
Gfdphl('S” www.mentor.com/embedded embedded

Crypto APIs in the kernel

Since 2.5.45, the kernel has had a cryptographic
framework

— Used internally for things like IPSEC

There are two userspace interfaces that provide access to
that API

— Cryptodev (/dev/crypto)
~ AF_ALG

The userspace APIs provide HW abstraction

Menpr “
Gm . www.mentor.com/embedded embeddad

Cryptodev

API compatible with OpenBSD Cryptographic Framework
(OCF) or /dev/crypto

Cryptodev creates a /dev/crypto device

Uses standard ioctls to interface with the kernel crypto
subsystem

phl('S” www.mentor.com/embedded embeclcleclu

Enabling the cryptodev module

cryptodeyv is implemented as an out-of-kernel module, and
therefore must be compiled against the i.MX6 kernel.

In poky, this is as simple as adding the following to
local.conf:

— CORE_IMAGE_EXTRA_INSTALL = "cryptodev-module"

GM%H%': www.mentor.com/embedded embeclclecl‘

AF_ALG

AF _ALG uses sockets to interface with the kernel

It is supported in mainline Linux (no external module
compile), but requires additional kernel config options

GM%H%': www.mentor.com/embedded embeclcleclu

Configuring the kernel for AF_ALG

AF_ALG requires the following kernel options to be
enabled:

CONFIG_CRYPTO_USER_API=y
CONFIG_CRYPTO_USER_API_HASH=y
CONFIG_CRYPTO_USER_API_SKCIPHER=y
CONFIG_CRYPTO_USER_API_RNG=y
CONFIG_CRYPTO_USER_API_AEAD=y

Menpr |
Gfdphl('S” www.mentor.com/embedded embeddad

OpenSSL

Instead of accessing crypto functions directly via CPU
instructions or the kernel APIs, we opted to use the
OpenSSL library to wrap that functionality for us

There are a few steps to enable OpenSSL for each kernel
API though (more on that in a bit)

Menpr “
I'Clphl('S” www.mentor.com/embedded embedded

A Pretty Picture

=

USar 5 it

Progp rieary

karmal 5 pace

This picture was found here:
https://image.slidesharecdn.com/slideshare-linuxcrypto-160411115704/95/slideshare-linux-crypto-4-638.ipg?cb=1460375879

GMenbE www.mentor.com/embedded Q:Ineﬂ O

Bbe

clic-:leg

OpenSSL with cryptodev

In order to support cryptodev, OpenSSL must be built
with the following compiler options:

— -DHAVE_CRYPTODEV -DUSE_CRYPTODEV_DIGESTS

Additionally, the sysroot should have the cryptodev
header installed: usr/include/crypto/cryptodev.h

In poky, the OpenSSL recipe enables these by default (the
header is installed via a DEPENDS on cryptodev-linux).

phl('S” www.mentor.com/embedded embeclclecl‘

OpenSSL with cryptodev (2)

When running OpenSSL, it is important to make sure that
you have the cryptodev module inserted first. After this is
inserted, you should see the /dev/crypto node become
available, and OpenSSL should report it as an available
engine:

Example:

root@mx6qg-csp:~# openssl engine
(cryptodev) BSD cryptodev engine
(dynamic) Dynamic engine loading support

phl('S” www.mentor.com/embedded embeclclecl‘

OpenSSL with AF_ALG

OpenSSL 1.0.2 does not support AF_ALG natively yet
A plugin must be used to interface with the kernel

For these tests, we used the af_alg plugin located
here: https://github.com/sarnold/af_alg

Native support for AF_ALG will be available starting in
OpenSSL 1.1.0.

GM%H%': www.mentor.com/embedded embeclclecl‘

OpenSSL with AF_ALG (2)

The plugin should be built as described in the plugin's
documentation.

The resulting library must be placed in /usr/lib/engines

/etc/ssl/openssl.cnf must contain the following:
openssl_conf = openss|_def

[openss|_def]
engines = openssl_engines

[openssl_engines]
af_alg = af_alg_engine

[af_alg_engine]

default_algorithms = ALL

CIPHERS=aes-128-cbc aes-192-cbc aes-256-cbc des-cbc des-ede3-cbc
DIGESTS=md4 md5 shal sha224 sha256 sha512

Menpr “
Gm . www.mentor.com/embedded embeddad

Comparing performance

We used the OpenSSL speed command to measure
performance

The "-elapsed" argument is used so that the throughput

measurements are against wall clock time, rather than
user CPU time

phl('S” www.mentor.com/embedded embeclcleclu

Test Run (SW implementation)

Example:
root@mxé6q-csp.:~# time -v openss| speed -evp aes-128-cbc -elapsed
You have chosen to measure elapsed time instead of user CPU time.
Doing aes-128-cbc for 3s on 16 size blocks: 5591286 aes-128-cbc’s in 3.00s
Doing aes-128-cbc for 3s on 64 size blocks: 1570038 aes-128-cbc’s in 3.00s
Doing aes-128-cbc for 3s on 256 size blocks: 405662 aes-128-cbc’s in 3.00s
Doing aes-128-cbc for 3s on 1024 size blocks: 102273 aes-128-cbc’s in 3.00s
Doing aes-128-cbc for 3s on 8192 size blocks: 12812 aes-128-cbc’s in 3.00s

<..snip...>
The ‘numbers’ are in 1000s of bytes per second processed.
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

aes-128-cbc ~ 29820.19k 33494.14k 34616.49% 34909.18k 34985.30k

phl('S” www.mentor.com/embedded embeclcleclu

Test Run (cryptodev)

Pass OpenSSL the "-engine cryptodev" argument to offload
supported cryptographic algorithms to the CAAM

Example:

root@mx6qg-csp:~# openss| speed -evp aes-128-cbc -engine cryptodev
engine "cryptodev” set.
Doing aes-128-cbc for 3s on 16 size blocks: 43298 aes-128-cbc's in 0.09s
Doing aes-128-cbc for 3s on 64 size blocks: 42467 aes-128-cbc's in 0.06s
Doing aes-128-cbc for 3s on 256 size blocks: 36657 aes-128-cbc's in 0.075
Doing aes-128-cbc for 3s on 1024 size blocks: 26992 aes-128-cbc’s in 0.03s
Doing aes-128-cbc for 3s on 8192 size blocks: 8101 aes-128-cbc's in 0.00s

<..snip...>
The ‘numbers’ are in 1000s of bytes per second processed.
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

aes-128-cbc 7697.42k 45298.13k 134059.8% 921326.93k infk

You can confirm that the CAAM is being used by checking to
see if CAAM interrupts are increasing:

root@mx6q-csp:~# cat /proc/interrupts | grep jrl
311: 2168629 0 0 0 GIC 138 Level 2102000.jr1

GMenbr www.mentor.com/embedded

phics’ embedded

Test Run (AF_ALG)

Pass OpenSSL the "-engine af_alg" argument to offload
supported cryptographic algorithms to the CAAM

Example:

root@mx6q-csp:/etc/ssl# openssl speed -evp aes-128-cbc -engine

af_alg
engine "af_alg" set.
Doing aes-128-cbc for 3s on 16 size blocks: 39792 aes-128-cbc's in 0.08s
Doing aes-128-cbc for 3s on 64 size blocks: 40170 aes-128-cbc's in 0.09s
Doing aes-128-cbc for 3s on 256 size blocks: 33830 aes-128-cbc's in 0.08s
Doing aes-128-cbc for 3s on 1024 size blocks: 26698 aes-128-cbc's in 0.05s
Doing aes-128-cbc for 3s on 8192 size blocks: 7248 aes-128-cbc's in 0.02s
<..snip...>
The ‘numbers’ are in 1000s of bytes per second processed.
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

aes-128-cbc 7958.40k 28565.33k 108256.00k 546775.04k
2968780.80k

Menpr “
Gm . www.mentor.com/embedded embedded

Summary of results

aes-128-chc

SW Implementation
CryptoDev
AF_ALG

Number of blocks processed in 3s / Block Size in Bytes

16 64 256 1024 8192

5591286 1570038 405662 102273 12812

43298 42467 36657 26992 3101

39792 40170 33830 26698 7248
www.mentor.com/embedded embedded

Conclusions

In our case, SW implementation performed best?!

Digging in further, we observed a drop in CPU utilization
using the CAAM module

— However, we also observed a significant number of context
switches

HW acceleration will not always yield faster results

This was not an exhaustive analysis; make sure to run
your own tests

GM%H%': www.mentor.com/embedded embeclcleclu

www.mentor.com/embedded gpnggrn?ji(-jggj

References

http://www.linuxjournal.com/node/6451/print
http://www.slideshare.net/nij05/slideshare-linux-crypto-

60753522
https://en.wikipedia.org/wiki/Cryptography

http://williamstallings.com/Extras/Security-
Notes/lectures/classical.html

nttps://www.cl.cam.ac.uk/~mkb23/research/Survey.pdf
http://www.logix.cz/michal/devel/padlock/

https://software.intel.com/en-us/blogs/2012/01/11/aes-
ni-in-laymens-terms

https://en.wikipedia.org/wiki/Crypto API (Linux)
https://www.openbsd.org/papers/ocf.pdf

a4

enpr
phics’ www.mentor.com/embedded Q:Ingp

ST

a

