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Who am 1I?

I am an embedded Linux architect and Member of
Technical Staff at Mentor Graphics. I have worked on
embedded devices since 1996. I started working with
Linux as a hobbyist in 1999 and professionally with
embedded Linux in 2006. In OSS, I have been involved
with the Yocto Project since it's public announcement in
2010, have served on the YP Advisory Board for two
different companies, and am currently a member of the
OpenEmbedded Board.
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A special word of thanks

Much of the hard work gathering data for this
presentation was done by a co-worker, Wade Farnsworth,
who was unable to attend today.
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About this presentation

This talk is geared towards using cryptographic hardware
acceleration from user space

— I wont spend a lot of time on kernel internals and drivers
The focus comes from work that we did with the i.MX6
However, much of this is generally applicable
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A word about Cryptography

G

In terms of goals, cryptography is pretty simple ©

— Send a message from one point to another without someone in
the middle being able to read it in a reasonably short, amount of
time

Most cryptographic algorithms rely on asymmetric,
computational complexity to guarantee security

— Brute force attacks should be infeasible in reasonable amounts
of time

— Encryption/decryption should be relatively cheap

In a related way, as the need for computational
complexity has increased, the time to encrypt/decrypt has
also increased, hence the desire for hardware acceleration

Menbr
ra

o) |
v .mentor. bedded l Ided
ph www.mentor.com/embedde



Some more words about Cryptography

Basic encryption usually requires a couple of things:
— A strong algorithm, e.g. AES
— A strong key from a large key space, e.g. random number

Basic encryption enables several, additional features:
— Tamper detection

— Secure storage

— Key exchange

_ Secure identification/authorization

— Secure execution

Strong Cryptography != Strong Security
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Types of Crypto Hardware

Standalone
— E.g. Smartcards

Instruction set extensions
— Built into primary CPU
— E.g. Via Padlock & Intel AES-NI

Separate co-processors

— Different interconnect flavors

- Separate processors connected by an external bus
- Trusted Computing Module (TPM)
Standard for a separate, specialized processor used to accelerate
Trusted Computing Group (TCG) manages the standard
Found in x86 platforms
- Offload processors
PCIE cards, for example

- Part of an SOC
- 1.MX6 crypto block
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1.MX6 Crypto Hardware

The NXP i.MX6 SoC includes a cryptographic acceleration
and assurance module (CAAM) block, which provides
cryptographic acceleration and offloading hardware.

The CAAM provides :

—  HW implementation of cryptographic functions
- Includes several ciphers and hashing algorithms

— Secure memory

— Secure key module

—  Cryptographic authentication
— Random-number generation
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Enabling CAAM in the 4.1 kernel

The kernel should have the following options enabled in order
to access the CAAM module:

— CONFIG_CRYPTO_DEV_FSL_CAAM=y

— CONFIG_CRYPTO_DEV_FSL_CAAM_JR=y

— CONFIG_CRYPTO_DEV_FSL_CAAM_RINGSIZE=9

—  # CONFIG_CRYPTO_DEV_FSL_CAAM_INTC is not set

— CONFIG_CRYPTO_DEV_FSL_CAAM_CRYPTO_API=y

— CONFIG_CRYPTO_DEV_FSL_CAAM_AHASH_API=y

— CONFIG_CRYPTO_DEV_FSL_CAAM_RNG_API=y

—  # CONFIG_CRYPTO_DEV_FSL_CAAM_RNG_TEST is not set
— CONFIG_CRYPTO_DEV_FSL_CAAM_SM=y

— CONFIG_CRYPTO_DEV_FSL_CAAM_SM_SLOTSIZE=7

—  # CONFIG_CRYPTO_DEV_FSL_CAAM_SM_TEST is not set
— CONFIG_CRYPTO_DEV_FSL_CAAM_SECVIO=y

—  # CONFIG_CRYPTO_DEV_FSL_CAAM_DEBUG is not set
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Cryptography in Userspace

Pure SW implementation

— Portable & supports arbitrary algorithms
— Costs CPU cycles

—  CPUs aren't optimized for this work

Use CPU instruction extensions

— Makes use of HW acceleration

— Doesn't involve the kernel

— Limited to algs that are support by HW, e.g. AES

Kernel APIs for userspace
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Crypto APIs in the kernel

Since 2.5.45, the kernel has had a cryptographic
framework

— Used internally for things like IPSEC

There are two userspace interfaces that provide access to
that API

— Cryptodev (/dev/crypto)
~ AF_ALG

The userspace APIs provide HW abstraction
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Cryptodev

API compatible with OpenBSD Cryptographic Framework
(OCF) or /dev/crypto

Cryptodev creates a /dev/crypto device

Uses standard ioctls to interface with the kernel crypto
subsystem

phl('S” www.mentor.com/embedded embeclcleclu



Enabling the cryptodev module

cryptodeyv is implemented as an out-of-kernel module, and
therefore must be compiled against the i.MX6 kernel.

In poky, this is as simple as adding the following to
local.conf:

— CORE_IMAGE_EXTRA_INSTALL = "cryptodev-module"
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AF_ALG

AF _ALG uses sockets to interface with the kernel

It is supported in mainline Linux (no external module
compile), but requires additional kernel config options
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Configuring the kernel for AF_ALG

AF_ALG requires the following kernel options to be
enabled:

CONFIG_CRYPTO_USER_API=y
CONFIG_CRYPTO_USER_API_HASH=y
CONFIG_CRYPTO_USER_API_SKCIPHER=y
CONFIG_CRYPTO_USER_API_RNG=y
CONFIG_CRYPTO_USER_API_AEAD=y
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OpenSSL

Instead of accessing crypto functions directly via CPU
instructions or the kernel APIs, we opted to use the
OpenSSL library to wrap that functionality for us

There are a few steps to enable OpenSSL for each kernel
API though (more on that in a bit)
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A Pretty Picture
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This picture was found here:
https://image.slidesharecdn.com/slideshare-linuxcrypto-160411115704/95/slideshare-linux-crypto-4-638.ipg?cb=1460375879
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OpenSSL with cryptodev

In order to support cryptodev, OpenSSL must be built
with the following compiler options:

— -DHAVE_CRYPTODEV -DUSE_CRYPTODEV_DIGESTS

Additionally, the sysroot should have the cryptodev
header installed: usr/include/crypto/cryptodev.h

In poky, the OpenSSL recipe enables these by default (the
header is installed via a DEPENDS on cryptodev-linux).
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OpenSSL with cryptodev (2)

When running OpenSSL, it is important to make sure that
you have the cryptodev module inserted first. After this is
inserted, you should see the /dev/crypto node become
available, and OpenSSL should report it as an available
engine:

Example:

root@mx6qg-csp:~# openssl engine
(cryptodev) BSD cryptodev engine
(dynamic) Dynamic engine loading support
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OpenSSL with AF_ALG

OpenSSL 1.0.2 does not support AF_ALG natively yet
A plugin must be used to interface with the kernel

For these tests, we used the af_alg plugin located
here: https://github.com/sarnold/af_alg

Native support for AF_ALG will be available starting in
OpenSSL 1.1.0.
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OpenSSL with AF_ALG (2)

The plugin should be built as described in the plugin's
documentation.

The resulting library must be placed in /usr/lib/engines

/etc/ssl/openssl.cnf must contain the following:
openssl_conf = openss|_def

[openss|_def]
engines = openssl_engines

[openssl_engines]
af_alg = af_alg_engine

[af_alg_engine]

default_algorithms = ALL

CIPHERS=aes-128-cbc aes-192-cbc aes-256-cbc des-cbc des-ede3-cbc
DIGESTS=md4 md5 shal sha224 sha256 sha512
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Comparing performance

We used the OpenSSL speed command to measure
performance

The "-elapsed" argument is used so that the throughput

measurements are against wall clock time, rather than
user CPU time

phl('S” www.mentor.com/embedded embeclcleclu



Test Run (SW implementation)

Example:
root@mxé6q-csp.:~# time -v openss| speed -evp aes-128-cbc -elapsed
You have chosen to measure elapsed time instead of user CPU time.
Doing aes-128-cbc for 3s on 16 size blocks: 5591286 aes-128-cbc’s in 3.00s
Doing aes-128-cbc for 3s on 64 size blocks: 1570038 aes-128-cbc’s in 3.00s
Doing aes-128-cbc for 3s on 256 size blocks: 405662 aes-128-cbc’s in 3.00s
Doing aes-128-cbc for 3s on 1024 size blocks: 102273 aes-128-cbc’s in 3.00s
Doing aes-128-cbc for 3s on 8192 size blocks: 12812 aes-128-cbc’s in 3.00s

<..snip...>
The ‘numbers’ are in 1000s of bytes per second processed.
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

aes-128-cbc ~ 29820.19k 33494.14k 34616.49% 34909.18k 34985.30k
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Test Run (cryptodev)

Pass OpenSSL the "-engine cryptodev" argument to offload
supported cryptographic algorithms to the CAAM

Example:

root@mx6qg-csp:~# openss| speed -evp aes-128-cbc -engine cryptodev
engine "cryptodev” set.
Doing aes-128-cbc for 3s on 16 size blocks: 43298 aes-128-cbc's in 0.09s
Doing aes-128-cbc for 3s on 64 size blocks: 42467 aes-128-cbc's in 0.06s
Doing aes-128-cbc for 3s on 256 size blocks: 36657 aes-128-cbc's in 0.075
Doing aes-128-cbc for 3s on 1024 size blocks: 26992 aes-128-cbc’s in 0.03s
Doing aes-128-cbc for 3s on 8192 size blocks: 8101 aes-128-cbc's in 0.00s

<..snip...>
The ‘numbers’ are in 1000s of bytes per second processed.
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

aes-128-cbc 7697.42k  45298.13k 134059.8% 921326.93k infk

You can confirm that the CAAM is being used by checking to
see if CAAM interrupts are increasing:

root@mx6q-csp:~# cat /proc/interrupts | grep jrl
311: 2168629 0 0 0 GIC 138 Level 2102000.jr1
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Test Run (AF_ALG)

Pass OpenSSL the "-engine af_alg" argument to offload
supported cryptographic algorithms to the CAAM

Example:

root@mx6q-csp:/etc/ssl# openssl speed -evp aes-128-cbc -engine

af_alg
engine "af_alg" set.
Doing aes-128-cbc for 3s on 16 size blocks: 39792 aes-128-cbc's in 0.08s
Doing aes-128-cbc for 3s on 64 size blocks: 40170 aes-128-cbc's in 0.09s
Doing aes-128-cbc for 3s on 256 size blocks: 33830 aes-128-cbc's in 0.08s
Doing aes-128-cbc for 3s on 1024 size blocks: 26698 aes-128-cbc's in 0.05s
Doing aes-128-cbc for 3s on 8192 size blocks: 7248 aes-128-cbc's in 0.02s
<..snip...>
The ‘numbers’ are in 1000s of bytes per second processed.
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

aes-128-cbc 7958.40k 28565.33k 108256.00k 546775.04k
2968780.80k
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Summary of results

aes-128-chc

SW Implementation
CryptoDev
AF_ALG

Number of blocks processed in 3s / Block Size in Bytes

16 64 256 1024 8192

5591286 1570038 405662 102273 12812

43298 42467 36657 26992 3101

39792 40170 33830 26698 7248
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Conclusions

In our case, SW implementation performed best?!

Digging in further, we observed a drop in CPU utilization
using the CAAM module

— However, we also observed a significant number of context
switches

HW acceleration will not always yield faster results

This was not an exhaustive analysis; make sure to run
your own tests
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