
mentor.com/embedded

Android is a trademark of Google Inc. Use of this trademark is subject to Google Permissions.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Qt is a registered trade mark of Digia Plc and/or its subsidiaries. All other trademarks mentioned in this document are trademarks of their respective owners.

Sean Hudson

Embedded Linux Architect

Linux Cryptographic
Acceleration on an i.MX6

www.mentor.com/embedded

Who am I?

� I am an embedded Linux architect and Member of
Technical Staff at Mentor Graphics. I have worked on
embedded devices since 1996. I started working with
Linux as a hobbyist in 1999 and professionally with
embedded Linux in 2006. In OSS, I have been involved
with the Yocto Project since it's public announcement in
2010, have served on the YP Advisory Board for two
different companies, and am currently a member of the
OpenEmbedded Board.

2

www.mentor.com/embedded

A special word of thanks

� Much of the hard work gathering data for this
presentation was done by a co-worker, Wade Farnsworth,
who was unable to attend today.

3

www.mentor.com/embedded

Outline

� About this presentation

� A word about Cryptography

� Crypto Hardware types

� i.MX6 CAAM

� Kernel access to HW

� Application access to HW

� Test methods

� Results

� Conclusions and final thoughts

� Q&A / Discussion

4

www.mentor.com/embedded

About this presentation

� This talk is geared towards using cryptographic hardware
acceleration from user space

— I won’t spend a lot of time on kernel internals and drivers

� The focus comes from work that we did with the i.MX6

� However, much of this is generally applicable

www.mentor.com/embedded

A word about Cryptography

� In terms of goals, cryptography is pretty simple ☺

— Send a message from one point to another without someone in
the middle being able to read it in a reasonably short, amount of
time

� Most cryptographic algorithms rely on asymmetric,
computational complexity to guarantee security

— Brute force attacks should be infeasible in reasonable amounts
of time

— Encryption/decryption should be relatively cheap

� In a related way, as the need for computational
complexity has increased, the time to encrypt/decrypt has
also increased, hence the desire for hardware acceleration

www.mentor.com/embedded

Some more words about Cryptography

� Basic encryption usually requires a couple of things:

— A strong algorithm, e.g. AES

— A strong key from a large key space, e.g. random number

� Basic encryption enables several, additional features:

— Tamper detection

— Secure storage

— Key exchange

— Secure identification/authorization

— Secure execution

— …

� Strong Cryptography != Strong Security

www.mentor.com/embedded

Types of Crypto Hardware

� Standalone

— E.g. Smartcards

� Instruction set extensions

— Built into primary CPU

— E.g. Via Padlock & Intel AES-NI

� Separate co-processors

— Different interconnect flavors

– Separate processors connected by an external bus

– Trusted Computing Module (TPM)

Standard for a separate, specialized processor used to accelerate

Trusted Computing Group (TCG) manages the standard

Found in x86 platforms

– Offload processors

PCIE cards, for example

– Part of an SOC

– i.MX6 crypto block

www.mentor.com/embedded

i.MX6 Crypto Hardware

� The NXP i.MX6 SoC includes a cryptographic acceleration
and assurance module (CAAM) block, which provides
cryptographic acceleration and offloading hardware.

� The CAAM provides :

— HW implementation of cryptographic functions

– Includes several ciphers and hashing algorithms

— Secure memory

— Secure key module

— Cryptographic authentication

— Random-number generation

www.mentor.com/embedded

Enabling CAAM in the 4.1 kernel

� The kernel should have the following options enabled in order
to access the CAAM module:

— CONFIG_CRYPTO_DEV_FSL_CAAM=y

— CONFIG_CRYPTO_DEV_FSL_CAAM_JR=y

— CONFIG_CRYPTO_DEV_FSL_CAAM_RINGSIZE=9

— # CONFIG_CRYPTO_DEV_FSL_CAAM_INTC is not set

— CONFIG_CRYPTO_DEV_FSL_CAAM_CRYPTO_API=y

— CONFIG_CRYPTO_DEV_FSL_CAAM_AHASH_API=y

— CONFIG_CRYPTO_DEV_FSL_CAAM_RNG_API=y

— # CONFIG_CRYPTO_DEV_FSL_CAAM_RNG_TEST is not set

— CONFIG_CRYPTO_DEV_FSL_CAAM_SM=y

— CONFIG_CRYPTO_DEV_FSL_CAAM_SM_SLOTSIZE=7

— # CONFIG_CRYPTO_DEV_FSL_CAAM_SM_TEST is not set

— CONFIG_CRYPTO_DEV_FSL_CAAM_SECVIO=y

— # CONFIG_CRYPTO_DEV_FSL_CAAM_DEBUG is not set

www.mentor.com/embedded

Cryptography in Userspace

� Pure SW implementation

— Portable & supports arbitrary algorithms

— Costs CPU cycles

— CPUs aren’t optimized for this work

� Use CPU instruction extensions

— Makes use of HW acceleration

— Doesn’t involve the kernel

— Limited to algs that are support by HW, e.g. AES

� Kernel APIs for userspace

www.mentor.com/embedded

Crypto APIs in the kernel

� Since 2.5.45, the kernel has had a cryptographic
framework

— Used internally for things like IPSEC

� There are two userspace interfaces that provide access to
that API

— Cryptodev (/dev/crypto)

— AF_ALG

� The userspace APIs provide HW abstraction

www.mentor.com/embedded

Cryptodev

� API compatible with OpenBSD Cryptographic Framework
(OCF) or /dev/crypto

� Cryptodev creates a /dev/crypto device

� Uses standard ioctls to interface with the kernel crypto
subsystem

www.mentor.com/embedded

Enabling the cryptodev module

� cryptodev is implemented as an out-of-kernel module, and
therefore must be compiled against the i.MX6 kernel.

� In poky, this is as simple as adding the following to
local.conf:

— CORE_IMAGE_EXTRA_INSTALL = "cryptodev-module"

www.mentor.com/embedded

AF_ALG

� AF_ALG uses sockets to interface with the kernel

� It is supported in mainline Linux (no external module
compile), but requires additional kernel config options

www.mentor.com/embedded

Configuring the kernel for AF_ALG

� AF_ALG requires the following kernel options to be
enabled:

CONFIG_CRYPTO_USER_API=y

CONFIG_CRYPTO_USER_API_HASH=y

CONFIG_CRYPTO_USER_API_SKCIPHER=y

CONFIG_CRYPTO_USER_API_RNG=y

CONFIG_CRYPTO_USER_API_AEAD=y

www.mentor.com/embedded

OpenSSL

� Instead of accessing crypto functions directly via CPU
instructions or the kernel APIs, we opted to use the
OpenSSL library to wrap that functionality for us

� There are a few steps to enable OpenSSL for each kernel
API though (more on that in a bit)

www.mentor.com/embedded

A Pretty Picture

This picture was found here:
https://image.slidesharecdn.com/slideshare-linuxcrypto-160411115704/95/slideshare-linux-crypto-4-638.jpg?cb=1460375879

www.mentor.com/embedded

OpenSSL with cryptodev

� In order to support cryptodev, OpenSSL must be built
with the following compiler options:

— -DHAVE_CRYPTODEV -DUSE_CRYPTODEV_DIGESTS

� Additionally, the sysroot should have the cryptodev
header installed: usr/include/crypto/cryptodev.h

� In poky, the OpenSSL recipe enables these by default (the
header is installed via a DEPENDS on cryptodev-linux).

www.mentor.com/embedded

OpenSSL with cryptodev (2)

� When running OpenSSL, it is important to make sure that
you have the cryptodev module inserted first. After this is
inserted, you should see the /dev/crypto node become
available, and OpenSSL should report it as an available
engine:

� Example:

root@mx6q-csp:~# openssl engine

(cryptodev) BSD cryptodev engine

(dynamic) Dynamic engine loading support

www.mentor.com/embedded

OpenSSL with AF_ALG

� OpenSSL 1.0.2 does not support AF_ALG natively yet

� A plugin must be used to interface with the kernel

� For these tests, we used the af_alg plugin located
here: https://github.com/sarnold/af_alg

� Native support for AF_ALG will be available starting in
OpenSSL 1.1.0.

www.mentor.com/embedded

OpenSSL with AF_ALG (2)

� The plugin should be built as described in the plugin's
documentation.

� The resulting library must be placed in /usr/lib/engines

� /etc/ssl/openssl.cnf must contain the following:
openssl_conf = openssl_def

[openssl_def]

engines = openssl_engines

[openssl_engines]

af_alg = af_alg_engine

[af_alg_engine]

default_algorithms = ALL

CIPHERS=aes-128-cbc aes-192-cbc aes-256-cbc des-cbc des-ede3-cbc

DIGESTS=md4 md5 sha1 sha224 sha256 sha512

www.mentor.com/embedded

Comparing performance

� We used the OpenSSL speed command to measure
performance

� The "-elapsed" argument is used so that the throughput
measurements are against wall clock time, rather than
user CPU time

www.mentor.com/embedded

Test Run (SW implementation)

� Example:

root@mx6q-csp:~# time -v openssl speed -evp aes-128-cbc -elapsed

You have chosen to measure elapsed time instead of user CPU time.

Doing aes-128-cbc for 3s on 16 size blocks: 5591286 aes-128-cbc's in 3.00s

Doing aes-128-cbc for 3s on 64 size blocks: 1570038 aes-128-cbc's in 3.00s

Doing aes-128-cbc for 3s on 256 size blocks: 405662 aes-128-cbc's in 3.00s

Doing aes-128-cbc for 3s on 1024 size blocks: 102273 aes-128-cbc's in 3.00s

Doing aes-128-cbc for 3s on 8192 size blocks: 12812 aes-128-cbc's in 3.00s

<…snip…>

The 'numbers' are in 1000s of bytes per second processed.

type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

aes-128-cbc 29820.19k 33494.14k 34616.49k 34909.18k 34985.30k

www.mentor.com/embedded

Test Run (cryptodev)

� Pass OpenSSL the "-engine cryptodev" argument to offload
supported cryptographic algorithms to the CAAM

� Example:
root@mx6q-csp:~# openssl speed -evp aes-128-cbc -engine cryptodev

engine "cryptodev" set.

Doing aes-128-cbc for 3s on 16 size blocks: 43298 aes-128-cbc's in 0.09s

Doing aes-128-cbc for 3s on 64 size blocks: 42467 aes-128-cbc's in 0.06s

Doing aes-128-cbc for 3s on 256 size blocks: 36657 aes-128-cbc's in 0.07s

Doing aes-128-cbc for 3s on 1024 size blocks: 26992 aes-128-cbc's in 0.03s

Doing aes-128-cbc for 3s on 8192 size blocks: 8101 aes-128-cbc's in 0.00s

<…snip…>

The 'numbers' are in 1000s of bytes per second processed.

type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

aes-128-cbc 7697.42k 45298.13k 134059.89k 921326.93k infk

� You can confirm that the CAAM is being used by checking to
see if CAAM interrupts are increasing:
root@mx6q-csp:~# cat /proc/interrupts | grep jr1

311: 2168629 0 0 0 GIC 138 Level 2102000.jr1

www.mentor.com/embedded

Test Run (AF_ALG)

� Pass OpenSSL the "-engine af_alg" argument to offload
supported cryptographic algorithms to the CAAM

� Example:

root@mx6q-csp:/etc/ssl# openssl speed -evp aes-128-cbc -engine
af_alg

engine "af_alg" set.

Doing aes-128-cbc for 3s on 16 size blocks: 39792 aes-128-cbc's in 0.08s

Doing aes-128-cbc for 3s on 64 size blocks: 40170 aes-128-cbc's in 0.09s

Doing aes-128-cbc for 3s on 256 size blocks: 33830 aes-128-cbc's in 0.08s

Doing aes-128-cbc for 3s on 1024 size blocks: 26698 aes-128-cbc's in 0.05s

Doing aes-128-cbc for 3s on 8192 size blocks: 7248 aes-128-cbc's in 0.02s

<…snip…>

The 'numbers' are in 1000s of bytes per second processed.

type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

aes-128-cbc 7958.40k 28565.33k 108256.00k 546775.04k
2968780.80k

www.mentor.com/embedded

Summary of results

aes-128-cbc

16 64 256 1024 8192

SW Implementation 5591286 1570038 405662 102273 12812

CryptoDev 43298 42467 36657 26992 8101

AF_ALG 39792 40170 33830 26698 7248

Number of blocks processed in 3s / Block Size in Bytes

www.mentor.com/embedded

Conclusions

� In our case, SW implementation performed best?!

� Digging in further, we observed a drop in CPU utilization
using the CAAM module

— However, we also observed a significant number of context
switches

� HW acceleration will not always yield faster results

� This was not an exhaustive analysis; make sure to run
your own tests

www.mentor.com/embedded

Q&A

www.mentor.com/embedded

References

� http://www.linuxjournal.com/node/6451/print

� http://www.slideshare.net/nij05/slideshare-linux-crypto-
60753522

� https://en.wikipedia.org/wiki/Cryptography

� http://williamstallings.com/Extras/Security-
Notes/lectures/classical.html

� https://www.cl.cam.ac.uk/~mkb23/research/Survey.pdf

� http://www.logix.cz/michal/devel/padlock/

� https://software.intel.com/en-us/blogs/2012/01/11/aes-
ni-in-laymens-terms

� https://en.wikipedia.org/wiki/Crypto_API_(Linux)

� https://www.openbsd.org/papers/ocf.pdf

