
1 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Hadoop,	Hive,	Spark
and	Object	Stores
Steve	Loughran
stevel@hortonworks.com	
@steveloughran

November	2016

Steve Loughran,
Hadoop committer, PMC member,
ASF Member

Chris Nauroth,
Apache Hadoop committer & PMC; ASF member

Rajesh Balamohan
Tez Committer, PMC Member

3 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Make	Apache	Hadoop	
at	home	in	the	cloud	
Step	1:	Hadoop	runs	great	on	Azure
Step	2:	Beat	EMR	on	EC2

4 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

ORC
datasets

inbound

Elastic	ETL

HDFS

external

5 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

ORC, Parquet
datasets

external

Notebooks

library

6 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Streaming

7 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

/

work

pending

part-00

part-01

00

00

00

01

01

01

complete

part-01

rename("/work/pending/part-01", "/work/complete")

A	Filesystem:	Directories,	Files	à Data

8 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

00

00

00

01

01

s01 s02

s03 s04

hash("/work/pending/part-01")
["s02", "s03", "s04"]

copy("/work/pending/part-01",
"/work/complete/part01")

01

01
01
01

delete("/work/pending/part-01")

hash("/work/pending/part-00")
["s01", "s02", "s04"]

Object	Store:	hash(name)->blob

9 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

00

00

00

01

01

s01 s02

s03 s04

HEAD /work/complete/part-01

PUT /work/complete/part01
x-amz-copy-source: /work/pending/part-01

01

DELETE /work/pending/part-01

PUT /work/pending/part-01
... DATA ...

GET /work/pending/part-01
Content-Length: 1-8192

GET /?prefix=/work&delimiter=/

REST	APIs

10 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

00

00

00

01

01

s01 s02

s03 s04

01

DELETE /work/pending/part-00

HEAD /work/pending/part-00

GET /work/pending/part-00

200

200

200

Often	Eventually	Consistent

11 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

org.apache.hadoop.fs.FileSystem

hdfs s3a wasb adlswift gs

Same	API

12 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Just	a	different	URL	to	read

val csvdata = spark.read.options(Map(
"header" -> "true",
"inferSchema" -> "true",
"mode" -> "FAILFAST"))

.csv("s3a://landsat-pds/scene_list.gz")

13 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Writing	looks	the	same	…

val p = "s3a://hwdev-stevel-demo/landsat"
csvData.write.parquet(p)

val o = "s3a://hwdev-stevel-demo/landsatOrc"
csvData.write.orc(o)

14 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Hive

CREATE EXTERNAL TABLE `scene`(
`entityid` string,
`acquisitiondate` timestamp,
`cloudcover` double,
`processinglevel` string,
`path` int,
`row_id` int,
`min_lat` double,
`min_long` double,
`max_lat` double,
`max_lon` double,
`download_url` string) ROW FORMAT DELIMITED

FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n'
STORED AS TEXTFILE
LOCATION s3a://hwdev-rajesh-new2/scene_list'
TBLPROPERTIES ('skip.header.line.count'='1');

(needed	to	copy	file	to	R/W	object	store	first)

15 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

> select entityID from scene where cloudCover < 0 limit 10;

+------------------------+--+
| entityid |
+------------------------+--+
| LT81402112015001LGN00 |
| LT81152012015002LGN00 |
| LT81152022015002LGN00 |
| LT81152032015002LGN00 |
| LT81152042015002LGN00 |
| LT81152052015002LGN00 |
| LT81152062015002LGN00 |
| LT81152072015002LGN00 |
| LT81162012015009LGN00 |
| LT81162052015009LGN00 |
+------------------------+--+

16 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark	Streaming	on	Azure	Storage

val streamc = new StreamingContext(sparkConf, Seconds(10))
val azure = "wasb://demo@example.blob.core.windows.net/in"
val lines = streamc.textFileStream(azure)
val matches = lines.map(line => {

println(line)
line

})
matches.print()
streamc.start()

17 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

s3:// —“inode on S3”

s3n://
“Native S3”

s3a://
Replaces s3n

swift://
OpenStack

wasb://
Azure WASB

Phase I
Stabilize

oss://
Aliyun

gs://
Google Cloud

Phase II
Speed & Scale

adl://
Azure Data

Lake

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017?

s3://
Amazon EMR S3

Where	did	those	object	store	clients	come	from?

Phase III
Speed & Consistency

18 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Problem: S3 work is too slow
1. Analyze	benchmarks	and	bug-reports	

2. Fix	Read	path

3. Fix	Write	path

4. Improve	query	partitioning

5. The	Commitment	Problem

getFileStatus()
read()

LLAP (single node) on AWS
TPC-DS queries at 200 GB scale

readFully(pos)

20 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The	Performance	Killers

getFileStatus(Path) (+ isDirectory(), exists())

HEAD path // file?
HEAD path + "/" // empty directory?
LIST path // path with children?

read(long pos, byte[] b, int idx, int len)

readFully(long pos, byte[] b, int idx, int len)

21 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Positioned	reads:	close	+	GET,	close	+	GET

read(long pos, byte[] b, int idx, int len)
throws IOException {

long oldPos = getPos();
int nread = -1;
try {
seek(pos);
nread = read(b, idx, len);

} catch (EOFException e) {
} finally {
seek(oldPos);

}
return nread;

}

seek() is the killer, especially the seek() back

22 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

HADOOP-12444	Support	lazy	seek	in	S3AInputStream

public synchronized void seek(long pos)
throws IOException {

nextReadPos = targetPos;
}

+configurable readhead before open/close()

<property>
<name>fs.s3a.readahead.range</name>
<value>256K</value>

</property>

But: ORC reads were still underperforming

23 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

HADOOP-13203:	fs.s3a.experimental.input.fadvise

// Before
GetObjectRequest req = new GetObjectRequest(bucket, key)
.withRange(pos, contentLength - 1);

// after
finish = calculateRequestLimit(inputPolicy, pos,
length, contentLength, readahead);

GetObjectRequest req = new GetObjectRequest(bucket, key)
.withRange(pos, finish);

bad for full file reads

24 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Every	HTTP	request	is	precious

⬢ HADOOP-13162:	Reduce	number	of	getFileStatus calls	in	mkdirs()

⬢ HADOOP-13164:	Optimize	deleteUnnecessaryFakeDirectories()

⬢ HADOOP-13406:	Consider	reusing	filestatus in	delete()	and	mkdirs()

⬢ HADOOP-13145:	DistCp	to	skip	getFileStatus when	not	preserving	metadata

⬢ HADOOP-13208:	listFiles(recursive=true)	to	do	a	bulk	listObjects

see HADOOP-11694

25 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Performance	Considerations	When	Running	Hive	Queries
⬢ Splits	Generation

– File	formats	like	ORC	provides	threadpool in	split	generation

⬢ ORC	Footer	Cache
– hive.orc.cache.stripe.details.size >	0

⬢ Reduce	S3A	reads	in	Task	side
– hive.orc.splits.include.file.footer=true

26 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Performance	Considerations	When	Running	Hive	Queries
⬢ Tez Splits	Grouping	

– Hive	uses	Tez as	its	default	execution	engine

– Tez groups	splits	based	on	min/max	group	setting,	location	details	and	so	on

– S3A	always	provides	“localhost”	as	its	block	location	information

– When	all	splits-length	falls	below	min	group	setting,	Tez aggressively	groups	them	into	single	
split.	This	causes	issues	with	S3A	as	single	task	ends	up	doing	sequential	operations.

– Fixed	in	recent	releases

⬢ Container	Launches
– S3A	always	provides	“localhost”	for	block	locations.	

– Good	to	set	“yarn.scheduler.capacity.node-locality-delay=0”

27 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

benchmarks	!=
your	queries
your	data

…but	we	think	we've	made	a	good	start

28 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Hive-TestBench Benchmark	shows	average	2.5x	speedup

⬢ TPC-DS	@	200	GB	Scale	in	S3	(https://github.com/hortonworks/hive-testbench)
⬢ m4x4x	large	- 5	nodes
⬢ “HDP	2.3	+	S3	in	cloud”	vs	“HDP	2.4 +	enhancements +	S3	in	cloud
⬢ Queries	like	15,17,	25,	73,75	etc did	not	run	in	HDP	2.3	(AWS	timeouts)

29 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

And	EMR? average	2.8x,	in	our	TCP-DS	benchmarks

*Queries 40, 50,60,67,72,75,76,79 etc do not complete in EMR.

30 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

What	about	Spark?
object	store	work	applies
needs	tuning
SPARK-7481	patch	handles	JARs

31 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Spark	1.6/2.0	Classpath	running	with	Hadoop	2.7	

hadoop-aws-2.7.x.jar
hadoop-azure-2.7.x.jar

aws-java-sdk-1.7.4.jar
joda-time-2.9.3.jar
azure-storage-2.2.0.jar

32 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

spark-default.conf

spark.sql.parquet.filterPushdown true
spark.sql.parquet.mergeSchema false
spark.hadoop.parquet.enable.summary-metadata false

spark.sql.orc.filterPushdown true
spark.sql.orc.splits.include.file.footer true
spark.sql.orc.cache.stripe.details.size 10000

spark.sql.hive.metastorePartitionPruning true

spark.hadoop.fs.s3a.readahead.range 157810688
spark.hadoop.fs.s3a.experimental.input.fadvise random

33 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

The	Commitment	Problem

⬢ rename() used	for	atomic	commitment	transaction
⬢ Time	to	copy()	+	delete()	proportional	to	data	*	files
⬢ S3:	6+	MB/s	
⬢Azure:	a	lot	faster	—usually

spark.speculation false
spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version 2
spark.hadoop.mapreduce.fileoutputcommitter.cleanup.skipped true

34 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

What	about	Direct	Output	Committers?

35 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

s3guard:
fast,	consistent	S3	metadata

36 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

00

00

00

01

01

s01 s02

s03 s04

01

DELETE part-00
200

HEAD part-00
200

HEAD part-00
404

DynamoDB becomes	the	consistent	metadata	store

PUT part-00
200

00

37 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

How do I get hold of these
features?

• Read	improvements	in	HDP	2.5

• Read	+	Write	in	Hortonwork Data	Cloud

• Read	+	Write	in	Apache	Hadoop	2.8	(soon!)

• s3Guard:	No	timetable

38 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

You	can	make	your	own	code	work	better	here	too!

😢 Reduce	getFileStatus(),	exists(),	isDir(),	isFile() calls
😢 Avoid	globStatus()

😢 Reduce	listStatus() &	listFiles() calls

😭 Really avoid	rename()

😀 Prefer	forward	seek,	
😀 Prefer	listStatus(path, recursive=true)

😀 list/delete/rename	in	separate	threads

😀 test	against	object	stores

39 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved3
9

©	Hortonworks	Inc.	2011	– 2016.	All	Rights	
Reserved

Questions?

40 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Backup	Slides

41 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Write	Pipeline

⬢ PUT	blocks	as	part	of	a	multipart,	as	soon	as	size	is	reached
⬢ Parallel	uploads	during	data	creation
⬢ Buffer	to	disk	(default),	heap	or	byte	buffers
⬢ Great	for	distcp

fs.s3a.fast.upload=true
fs.s3a.multipart.size=16M
fs.s3a.fast.upload.active.blocks=8

// tip:
fs.s3a.block.size=${fs.s3a.multipart.size}

42 ©	Hortonworks	Inc.	2011	– 2016.	All	Rights	Reserved

Parallel	rename	(Work	in	Progress)

⬢Goal:	faster	commit	by	rename
⬢ Parallel	threads	to	perform	the	COPY	operation
⬢ listFiles(path, true).sort().parallelize(copy)
⬢ Time	from	sum(data)/copy-bandwidth	to
more	size(largest-file)/copy-bandwidth

⬢ Thread	pool	size	will	limit	parallelism
⬢ Best	speedup	with	a	few	large	files	rather	than	many	small	
ones

⬢wasb expected	to	stay	faster	&	has	leases	for	atomic	commits	

