S ared Logging with the
Linux Kernel

ITPart Deux!!

Sean Hudson
Embedded Linux Architect

(ELIn2s

mentor.com/embedded

Android is a trademark of Google Inc. Use of this trademark is subject to Google Permissions.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Qt is a registered trade mark of Digia Plc and/or its subsidiaries. All other trademarks mentioned in this document are trademarks of their respective owners.

Who am 1I?

I am an embedded Linux architect and Member of
Technical Staff at Mentor Graphics. I have worked on
embedded devices since 1996. I started working with
Linux as a hobbyist in 1999 and professionally with
embedded Linux in 2006. In OSS, I have been involved
with the Yocto Project since it's public announcement in
2010, have served on the YP Advisory Board for two
different companies, and am currently a member of the
OpenEmbedded Board.

GM%H%': 2 www.mentor.com/embedded embeclclecl‘

Why "Part Deux”?

To provide an update to my talk at ELCE 2015 in Dublin

— Slides for previous presentation here:

- http://elinux.org/images/2/2b/2015-10-05 - ELCE -
Shared Logging.pdf

— Video of previous presentation here:
- https://www.youtube.com/watch?v=E4h10f8zyVqg

Because I get to make a silly cultural reference

GM%H%': 3 www.mentor.com/embedded emt)eclclecl‘

Outline

What and why of shared logging?
Hey! Haven't I seen this before?

Kernel logging structures, then and now
Design and Implementation
Q&A / Discussion

phl('S” www.mentor.com/embedded

embedded

What is shared logging?

Simply put, both the bootloader and the kernel can:

- read and write log entries for themselves normally
and

— read log entries from the other
— read multiple boot cycles

The bootloader can also:
— Dynamically specify a shared memory location to use for logging

In order for the bootloader to read kernel entries and to
allow multiple boot cycles, log entries must persist past
reboots. For now, I have focused on shared volatile RAM,

but this might work for NV storage of logs as well, ala
pstore.

Mgﬂbﬁ 6

www.mentor.com/embedded

embedded

G

Why would we want shared logging?

Imagine debugging without logging.
- ©

Most common use case:

— Post-mortem analysis of a failed boot

Other useful cases:

— Performance tweaking

— Boot timing analysis

— Boot sequencing analysis

— Boot and system debugging

Not a silver bullet!

— Shared logging provides you with another tool in the box to use
when you need it

Menpr |
Grdph . 7 www.mentor.com/embedded embedded

Haven’t we seen this before?

Yes!

From git history, back in late 2002, Klaus Heydeck added
support for a shared memory buffer that could be passed
to the kernel to be used for shared logging.

AFAICT, this feature was only supported in the Denx’s
kernels and not for all architectures. (PPC only?)

Focus seems to have been primarily on being able to see
bootloader entries in the kernel

Does not appear to have been widely used

Unfortunately, the feature suffered bit rot over time and

changes in the kernel logging structures broke it (more on
those changes later)

Menpr
Gfdphl('S” 8 www.mentor.com/embedded

embedded

What about pstore and ramoops

This question came up in Dublin

From a quick review, they appear to serve slightly
different purposes

They both rely on small, pre-allocated regions of memory
Perhaps these could be integrated in some fashion
Certainly, this is an area for future exploration

Anyone know of additional features that I should look at?

References:

_ https://www.kernel.org/doc/Documentation/ABI/testing/pstore
_ https://www.kernel.org/doc/Documentation/ramoops.txt

Menpr
Gfdphl('S” 9 www.mentor.com/embedded

embedded

Kernel logging structures (then)

As far back as 2.6.11, the first git commit in my tree, the

kernel log was a byte-indexed array of characters with a
simple array of characters

Structure and implementation contained in printk.c
Buffer space was declared as a static global inside printk.c

Indices provided for logging start, logging end, and
console start locations in the buffer

Simple implementation
Fairly easy to support by the bootloader

www.mentor.com/embedded

embedded

Kernel logging structures (then)

™ & @ darknighte@u16:[1]: ~/projects/kernel/linux
/M
* logbuf_lock protects log buf, [f¥IAEIRd, log end, con_start and logged cha
* It i1s also used in interesting ways to provide interlocking 1in

* release_console_sem().

*/
static DEFINE_SPINLOCK(logbuf lock);

static char __ log buf[__LOG BUF_LEN];
static char *log buf = __ log buf;
static int log_buf _len = __ LOG_BUF_LEN;

##define LOG_BUF_MASK (log_buf_len-1)
##define LOG_BUF(idx) (log_buf[(idx) & LOG_BUF_MASK])

/:k

* The indices into log buf are not constrained to log buf_len - they

* must be masked before subscripting

*

/
static unsigned long [KXIAEIRE; /* Index into log_buf: next char to be read b
static unsigned long con_start; /* Index into log buf: next char to be sent
static unsigned long log_end; /* Index into log buf: most-recently-written-

unsigned long logged chars; /* Number of chars produced since last rea

www.mentor.com/embedded

embedded

Kernel logging structures (post 2012)

In May 2012, Kay Sievers’ patch changed the structure to
a variable length record with a fixed header

Structure and implementation still contained in printk.c
Buffer space still declared as a static global inside printk.c
The header is fixed and includes the timestamp

More complex. Has more pointers for tracking
— Sequence and index for: first, next, clear, & syslog

www.mentor.com/embedded

embedded

Kernel logging structures (post 2012)

) darknighte@u16:[1]: ~

log flags {
LOG_NOCONS
LOG_NEWLINE
LOG_PREFIX
LOG_CONT

printk log {
uéd4 ts nsec;
ule len;

ule text len;
ulé dict len;
u8 facility;
u8 flags: ;
u8 level: ;

}

~_packed aligned()

"
»

www.mentor.com/embedded

embedded

Kernel logging structures (post 2012)

darknighte@u16:[1]: ~

DECLARE_WAIT_QUEUE_HEAD(log_wait);

u64 syslog seq;
u32 syslog 1idx;
log flags syslog prev;
syslog partial;

log first_seq;
log first idx;

log next seq;
log_next idx;

console seq;
console 1idx;
log flags console prev;

clear_seq;

clear_1idx;

www.mentor.com/embedded

embedded

A few observations

The shift to a record based structure in the kernel
introduced more pointers to manage for the handoff
between the bootloader and the kernel to occur correctly

Global static declarations in the kernel makes the logging
structures available as soon as the C runtime is available
(important later)

Using global statics structures complicates sharing the log
entries

Menpr |
Gfdphl('S” 15 www.mentor.com/embedded embedded

Revised goals (since last time)

The original focus for this feature was on getting a bootloader
to write a format that the kernel understood, not to provide a
new, general mechanism for sharing.

My goals are slightly different.
Available all the time
— Must have negligible or no impact on regular boots

Portable across bootloaders and architectures
— uBoot would provide POC reference, but should be easy to port

Support dynamic, arbitrary location for logging buffer
— Allows the bootloader to specify an arbitrary location to the kernel

Moz ot I bl ckatic alogat

Provide self-checking that ensured correct operation in the face
of incompatible entries seen by the bootloader of the kernel

Provide as an ‘opt-in’ for both bootloader and kernel

Mgﬂbﬁ 16

www.mentor.com/embedded

embedded

G

Interface design

To address the
passed into the

number of parameters needed to be
kernel, I added a control block structure

The control block encapsulates all of the necessary

logging informa

tion including structure size, various

indices, and buffer locations for sharing purposes

Allows a single
change where t

Allows the boot
kernel

nointer location for the control block to
ne log information is being written

oader to pass a single parameter to the

In theory, allows the kernel to adopt the CB and start
writing immediately to the next location in the buffer (

O(1) operation

)

— In practice, there are wrinkles

www.mentor.com/embedded

embedded

Kernel logging structures (proposed)

B S & darknighte@u16:[1]: ~/projects/kernel/linux/kernel/printk
* The optional key/value pairs are attached as continuation lines starting

* with a space character and terminated by a newline. All possible
* non-prinatable characters are escaped in the "\xff" notation.

*/

enum log_flags {
LOG_NOCONS
LOG_NEWLINE
LOG_PREFIX
LOG_CONT

}s

struct irintk loi i
HaR A MCONFIG LOGBUFFER

u32 log_magic;

#endif

ulé len;

ulé text_len;
ulé dict_len;
u8 facility;
u8 flags:5;
u8 level:3;
u64 ts_nsec;

* already flushed, do not print to console */

text ended with a newline */

* text started with a prefix */
* text is a fragment of a continuation line */

sanity check number */

* length of entire record */

length of text buffer */
length of dictionary buffer */
syslog facility */

* internal record flags */
* syslog level */
* timestamp in nanoseconds */

www.mentor.com/embedded

embedded

Kerel logging structures (proposed)

® darknighte@u16:[1]: ~/projects/kernel/linux/kernel/printk

Btruct lcb_t {
/* Pointer to log buffer space and length of space */
char *log_buf;
u32 log_buf_len;

/* index and sequence of the first record stored in the buffer */
u64 log_first_seq;
u32 log_first_idx;

/* index and sequence of the next record to store in the buffer */
u64 log_next_seq;
u32 log_next_idx;

/* the next printk record to read by syslog(READ) or /proc/kmsg */
u64 syslog_seq;

u32 syslog_idx;

enum log_flags syslog_prev;

size_t syslog_partial;

/* the next printk record to write to the console */
u64 console_seq;

u32 console_idx;

enum log_flags console_prev;

/* the next printk record to read after the last 'clear' command */
u64 clear_seq;
u32 clear_idx;

EAR I ECONFIG LOGBUFFER

u32 log_version;

u32 lcb_padded_len;

u32 lcb_size;

u32 log_hdr_size;
phys_addr_t log_phys_addr;
u32 lcb_magic;

#ifdef CONFIG_PRINTK
DECLARE_WAIT_QUEUE_HEAD(log_wait);

Menpr
Grdphk's*’ 19 www.mentor.com/embedded embedded

How to pass the CB to the kernel?

Fixed, well known location
— Used by the original shared log feature

— Used to work, but is brittle/broken

- Relies on a calculation of the end of RAM to align between the kernel
and the bootloader

- Doesn't always work!
Command line
— Initial approach

— Very flexible and allows for dynamic setting by the user

— There’s a small performance hit that occurs during log coalescing

- This is O(n) based on the number of bootloader log entries and
kernel entries written when the coalescing occurs

— Personally, I greatly prefer this approach
— Acceptable upstream?

Menpr “
Gfdphl('S” 20 www.mentor.com/embedded embedded

How to pass the CB to the kernel? (2)

DeviceTree

Second approach

Fixed at DT compile time

Used OF functions to extract information from DT
- Personally found this a bit difficult to work with

Log coalescing still occurred, albeit slightly reduced from before

- This is O(n) based on the nhumber of bootloader log entries and
kernel entries written when the coalescing occurs

Perhaps more acceptable upstream?

21 www.mentor.com/embedded

embedded

How to pass the CB to the kernel? (3)

DT + command line arg
— Third approach

— Using reserved memory areas in the DT relies on existing
infrastructure and ‘just works’

- Avoids platform specific code for memory reservation too

- In the UBoot POC, this utilizes the mainline fdt features to modify the
DT in a live manner

- This puts the responsibility on the bootloader to ensure memory is
reserved

— Uses command line parameter to specify memory location of Icb
— Log coalescing still occurs

www.mentor.com/embedded

embedded

Bootloader POC implementation

Existing log entry format in uBoot was very different from
that in the kernel

However, uBoot already had the concept of a versioned
log format

So, introduced a new log format (v3) to be compatible
with the kernel format

I dropped much of the uBoot env control variables to
simplify the design and due to issues encountered during
testing

GM%H%': 23 www.mentor.com/embedded emt)eclclecl‘

Bootloader upstream status

Ported to the mainline internally
Some additional cleanup/refactoring is still needed
Patches are not submitted upstream as of yet. ®

GM%H%': 24 www.mentor.com/embedded emt)eclcleclu

Kernel implementation

Relocated all the sequence and indices to a CB

Added support for re-pointing the CB from a global static
to one passed in to the kernel

Uses command line to pass the necessary pointer to the
Icb

During command line processing, the values for the
shared log are parsed and captured for later use

After mm_init(), the function setup_ext_logbuff() gets
called, which halts the logging temporarily and coalesces
the entries together

GM%H%': 25 www.mentor.com/embedded emt)eclclecl‘

Kernel upstream status

Refactoring the code since last time dropped all arch
specific code

Almost all changes are located in printk.h/printk.c
— Exceptions are: Kconfig and main.c

Ported to the mainline kernel as of 4.8rc
Patches submitted to LKML on 2016/09/29
V2 submitted to LKML on 2016/10/04

Also available on github here:
https://qgithub.com/darknighte/linux/tree/for review v2

www.mentor.com/embedded

embedded

Some gotchas

Physical vs virtual addressing

— Bootloader uses physical

— Kernel uses both, depending on where you are in the code
— Making sure the right addresses are used is critical

Mapped memory vs unmapped memory
— Kernel memory gets mapped in stages

— Make sure that the memory you are attempting to address is
mapped in before you use it

Structure packing
— Packed structures are bad for portability
— Had to manually re-order the header struct to make it align

Also, mucking around in init/early init is fraught with peril
and quiet failures.

Menpr “
Grdph . 27 www.mentor.com/embedded embedded

Some gotchas (2)

Porting to mainline

— Patches ported pretty easily and compiled pretty easily
— Reserved memory regions changed

Building

— Building uboot for x86 has been non-trivial

— Creating test builds with same toolchain

Testing

— Initial patch submission to the kernel got a failure for kernel-ci in
about 10 mins. ®

— Turns out that turning off CONFIG_LOGBUFFER was fine, but
turning off CONFIG_PRINTK wasn't.

Menpr :
Gm . 28 www.mentor.com/embedded embedded

Planned and possible future work

Complete cleanup of U-Boot patches and submit
Build U-Boot for x86 POC

Investigate OF extraction of Icb pointer during early boot
to remove static global buffer in printk.c

Investigate timer handoff to kernel for single time base

Perhaps augment U-Boot env settings to dynamically shift
the buffer location and relocate entries

Investigate coreboot and implement similar feature

www.mentor.com/embedded

embedded

Q&A DISCUSSION

www.mentor.com/embedded

embedded

