Using Apache Brooklyn and Docker to Simulate your Production Environments in the Cloud

Andrew Kennedy
grkvt@apache.org
Simulating Production

Using Apache Brooklyn and Clocker to Simulate Production Environments in the Cloud

ApacheCon Austin, TX; April 2015
Andrew Kennedy @grkvlt
Introduction

• Andrew Kennedy
 – Clocker Project Founder and Lead Engineer
 – Open Source and Distributed Systems
 – Apache Committer for Brooklyn and Qpid
 – github.com/grkvlt

• Cloudsoft Corporation
 – Open Source Application Management Specialists

@grkvlt
Agenda

1. Clocker Introduction
2. What is a Docker Cloud?
3. Demonstration
4. Clocker Applications
5. Simulating Production?
6. Questions

@grkvlt
Clocker Introduction
What does it do?

1. Spins up and Manages Docker Clouds
2. Serves up Containers on Demand
3. Manages Composite Application Deployments on Docker

@grkvlt
What does it provide?

• Multi Host and Multi Container Applications
• Seamless Networking
 – Communication Between Services
• Orchestration and Clustering
 – Control of Containers
 – Container Management

@grkvlt
Who is using it?

• Testing and Proof of Concept Stage
 – Financial Services
 – Insurance
• Production
 – Multi-tenant Application Trial
 – Container per service
 – Ideally suited to the Clocker model

@grkvlt
Where can I find it?

- Open Source on GitHub
 - Apache 2.0 Licensed
 - http://clocker.io
- Status
 - **0.8.0 Developer Preview** available now
 - **0.8.0 Release** at Docker Meetup this week!

@grkvlt
What is a Docker Cloud?
Docker Cloud

1. On-demand
2. Multi-Tenant
3. Hardware Independent
4. Application Driven
Clocker and Brooklyn

• What is it?
 – Brooklyn Application and Location
 – Uses jclouds for Docker access

• What does it provide?
 – First Class Docker Support in Brooklyn
 – Optimized Brooklyn Blueprints for Docker

@grkvlt
Apache Brooklyn

• Application Management Platform
• Deploy, Manage and Monitor Blueprints
• Provisioning, Installation and Customization
• Management
 – AutoScaling, Resilience, Performance, Security
Apache jclouds

• Java Cloud Library
• API Agnostic
• Create Virtual Machines
• Docker Driver by @turlinux
• Virtual Container
Docker

- Popular
- Containers
 - Isolation
 - Performance
 - Composable
 - Complex
 - The Future...

@grkvlt
Software-defined Networking

• Pluggable providers
 • Weave
 • Project Calico
 • New in 0.8.0
 • DOVE
• Write your own!

@grkvlt
Clocker Orchestration

- Clocker
- Cloud
- Virtual Machine
- Docker Engine
- Container
- SDN
- Network Segment
Demonstration
Docker Cloud Infrastructure

Status: STARTING
Service Up: false
URL: /clocker
Type: brooklyn.entity.basic.BasicApplication
ID: ezq2RlyY

Blueprint

Config
Features

• Orchestrated Docker 1.5.0 deployment with SDN integration
• Automated attachment of containers to multiple dynamic networks
• Brooklyn application blueprints with network topology
• Docker images as Brooklyn entity source
Clocker Applications
Clocker Features

• Application Deployment
 – Oasis CAMP YAML Blueprint
 – TOSCA in Development
 – Docker Compose
 – Core Brooklyn

• Mixed Destinations
 – Some Virtual Machines
 – Some Bare Metal
 – Some Containers

@grkvlt
Clocker Features

• Docker Extensions to Brooklyn
 – Dockerfile or Image Specification for Installation
 – Placement Strategies for Containers
 – Create Docker Images and Networks

• Manages Docker Engine
 – Deployment and Management
 – Installation and Configuration
 – Software-Defined Networking
Brooklyn Blueprints

• Describe Applications
• OASIS CAMP Standard
• List of Services
• Tree Structure
• Sensors, Effectors and Policies

@grkvlt
Blueprint Example

```json
name: appserver-w-policy
services:
  - type: brooklyn.entity.webapp.ControlledDynamicWebAppCluster
    initialSize: 1
    memberSpec:
      $brooklyn:entitySpec:
        type: brooklyn.entity.webapp.jboss.JBoss7Server
        brooklyn.config:
          wars.root:
            http://search.maven.org/remotecontent?filepath=io/brooklyn/example/brooklyn-example-hello-world-sql-webapp/0.6.0/brooklyn-example-hello-world-sql-webapp-0.6.0.war
          http.port: 8080+
          java.sysprops:
            brooklyn.example.db.url: $brooklyn:formatString("jdbc:%s%s?user=%s\&password=%s", component("db").attributeWhenReady("datastore.url"), "visitors", "brooklyn", "br00k11n")
    brooklyn.policies:
      - policyType: brooklyn.policy.autoscaling.AutoScalerPolicy
        brooklyn.config:
          metric: $brooklyn:sensor("brooklyn.entity.webapp.DynamicWebAppCluster", "webapp.reqs.perSec.windowed.perNode")
          metricLowerBound: 10
          metricUpperBound: 100
          minPoolSize: 1
          maxPoolSize: 5
  - type: brooklyn.entity.database.mysql.MySqlNode
    id: db
    name: DB HelloWorld Visitors
    brooklyn.config:
      datastore.creation.script.url:
```
Application Components

• Services
 • Catalog Entries
 • Defined by Brooklyn Code
• Policies
• Sensors
• Enrichers

@grkvlt
Services

• Brooklyn Entities
 • Installed by running SSH commands
 • Add packages or extract archive files
 • Run arbitrary commands

• Clocker commits image after installation

@grkvlt
Container Definition

• Sources
 – Brooklyn Entity Definition
 – Chef Recipe
 – Docker Image Definition
 – Dockerfile

• Create Image Automatically
 – Commit or Push for Reuse

@grkvlt
Container Definition

id: docker-haproxy
name: "Docker Hub HAProxy Load Balancer"
origin: "https://registry.hub.docker.com/_/haproxy/
locations:
 - my-docker-cloud
services:
 - type: brooklyn.entity.proxy.haproxy.HAProxyController
 id: haproxy
 brooklyn.config:
 docker.image.name: haproxy
 docker.image.tag: 1.5.9
 install.dir: /usr/local/sbin/
 run.dir: /usr/local/etc/haproxy/
 network.list:
 - dmz
Container Definition

id: dockerfile-mysql
name: "Docker Hub MySQL Database"
origin: "https://registry.hub.docker.com/_/mysql/"
locations:
 - my-docker-cloud
services:
 - type: brooklyn.entity.container.docker.application.DockerfileApplication
 id: mysql
 name: "MySQL"
 brooklyn.config:
 docker.dockerfile.url:
 "https://s3-eu-west-1.amazonaws.com/brooklyn-clocker/mysql-5.6.tgz"
 docker.container.environment:
 MYSQL_ROOT_PASSWORD: "s3cr3t"
Container Definition

id: dockerfile-mysql
name: "Docker Hub LAMP Stack"
locations:
 - my-docker-cloud
services:
 - type: docker:mysql:5.7.5
 id: mysql
 env:
 MYSQL_ROOT_PASSWORD: "s3cr3t"
 - type: docker:grkvlt/myapp:latest
 id: application
 env:
 MYSQL_HOST:
 $brooklyn:component("mysql").attributeWhenReady("host.hostname")
Container Placement

• Where do we want the service to run?
• Supply and Demand
 – Here's the locations you can use...
 – I want a very specific location...
• Docker Swarm
 – Possible future integration point...
Container Placement

• Demand
 – Adding an Application
 – Scaling existing Application

• Requirements
 – Host Location
 – Service Resources
 – CPU, Memory

@grkvlt
Container Placement

• Supply
 – Choose a Host from available
 – Create new Host if required

• Start Container there
 – Set CPU and Memory
 – Attach to Network
Container Placement

• Placement Strategies
 – Random, Depth or Breadth First
 – CPU or Memory Usage
 – Memory, CPU or Container Limits
 – Geographic Constraints

• User Defined
 – Java Predicate
Placement Strategy

• Deterministic
• Simple

 – Predicate and Comparator

```python
docker.container.strategies:
  - $brooklyn:object:
    type: "brooklyn.location.docker.strategy.MaxContainersPlacementStrategy"
    brooklyn.config:
      maxContainers: 16
  - $brooklyn:object:
    type: "brooklyn.location.docker.strategy.CpuUsagePlacementStrategy"
    brooklyn.config:
      maxCpu: 0.75
```

@grkvlt
Autonomics

• Brooklyn Policies
• Attached to Entities in Application
 – Nothing Docker Specific
• Elastic Scaling
 – Cluster Resizing
 – Sensor Driven

@grkvlt
Application Resilience

• Service Resilience and Replacement
 – Restart Service and Container
 – Application Level, Not Infrastructure
 – Same as Cloud

• Snapshot Running Container for Restart

@grkvlt
Headroom

- Ensure resources available
- Based on MaxContainers strategy limit
 - Or Percentage Utilization
 - Or CPU and RAM allocation
- Scale Docker Host Cluster Automatically
 - Add new Docker hosts
 - Remove empty Docker hosts

@grkvlt
Software-Defined Networking

• Needed for Seamless Provisioning
• Host to Host Communication
 – Same LAN Segment
 – No Port Forwarding
 – Natural Application Configuration
• Initial Driver was EPMD Applications

@grkvlt
Networking Providers

• Implementation Agnostic
 – L2 over L3 etc.
 – Similar to Hypervisor in Clouds

• Generic Interfaces
 – Host Component
 – Service Component (or Endpoint)
Clocker Networking

Internet \(\rightarrow\) SDN Gateway \(\rightarrow\) Host \(\rightarrow\) Container \(\rightarrow\) Container

Internet \(\rightarrow\) SDN Gateway \(\rightarrow\) SDN Bridge

@grkvlt
Networking Capabilities

• Provide Multiple Networks
 – Single Application or Shared
 – Private Addresses
 – Segmented by CIDR

• Docker Port Forwarding Access
 – Debug Mechanism
Simulating Production?
Application Development Cycle

1. Development
2. Continuous Integration
3. UAT or Testing
4. Staging
5. Production
Dev Cycle Reality

- My Laptop
- Jenkins Server
- Bob's Laptop
- Some spare VMs we found...
- The best we can afford
 - until next year's budget...?

@grkvlt
Application Development

• Same Application
• Different Infrastructures
 – Very Different
• So ends up...
 – Different Application
Application Development

• Which means
 – We aren't testing the right things
 – Production is probably broken under load or scale
 – Ops are unhappy ;(
Different Application

• Very Different!
 – No resilient pairs
 – No failover
 – No load balancer
 – No Clustering
 – Single network, namespace, domain, etc.

@grkvlt
How can we fix this?

• Perfect worlds
• All environments identical
• Staging *is* an *exact* copy of production
 – Ready for App and Infra cut-over
• UAT *is* Staging, with anonymized data
• And so on, rolling through environments

@grkvlt
How can we fix this?

- CI becomes CD
 - Dedicated production-level environment for builds
 - Successful builds promoted to UAT
- Test and Dev...?
 - You have to make some sacrifices ;)
 - But will try and test the HA mechanism and so on in isolation
 - But at least Ops are happy
How can we fix this?

- Imperfect world
- Or, the DevOps way
 - We don't have enough money for six copies of our architecture
 - Particularly at scale or with large data sets
 - So we fake it!
- The *important* thing is our architecture
 - It defines the application completely
 - We describe this *once* in a blueprint
 - And then deploy to our various environments

@grkvlt
Clocker and DevOps

- Application blueprint
- Describes
 - Services
 - Configuration
 - Policies
 - Networks
 - Hierarchy
 - Connections
- Can be deployed to any Brooklyn Location
Clocker and DevOps

• Locations include
 – Vagrant or other VMs on my laptop
 – Apache jclouds supported providers
 • On premise OpenStack CI cloud
 • Public SoftLayer environment
 • ... choose your favourite
 – Docker Clouds using Clocker
 • Containers instead of VMs
 • Automatically
 • No input from developer required
There's More Than One Way...

• Could use Clocker and Docker everywhere
 – Generate Docker image during build process
 – Size underlying VMs appropriately
 – Allocate different CPU/memory to containers
 – Deploy images to Clocker everywhere

• Many enterprises not yet ready for this...

@grkvlt
Thank You!
Questions?
Web Resources

http://clocker.io/
http://brooklyn.io/
http://docker.io/
http://weave.works/
http://projectcalico.org/
http://abstractvisitorpattern.co.uk/

@grkvlt