
Mastering the DMA and IOMMU
APIs

Embedded Linux Conference Europe 2014
Düsseldorf

Laurent Pinchart
laurent.pinchart@ideasonboard.com

DMA != DMA

DMA != DMA
(mapping) (engine)

The topic we will focus on is how to
manage system memory used for
DMA.

This presentation will not discuss
the DMA engine API, nor will it
address how to control DMA
operations from a device point of
view.

DMA vs. DMA

Memory
Access

Simple Case

CPU
Core

Device

Memory

Memory
Controller

Simple Case

CPU
Core

Device

Memory

Memory
Controller

1 2

(1) CPU writes to memory
(2) Device reads from memory

Write Buffer

CPU
Core

Device

Memory

Memory
Controller

Write Buffer

CPU
Core

Device

Memory

Memory
Controller

1 3

2

(1) CPU writes to memory
(2) CPU flushes its write buffers
(3) Device reads from memory

L1 Cache

CPU
Core

Device

Memory

Memory
Controller

L1
Cache

L1 Cache

CPU
Core

Device

Memory

Memory
Controller

L1
Cache

(1) CPU writes to memory
(2) CPU cleans L1 cache
(3) Device reads from memory

1

2

3

L2 Cache

CPU
Core

Device

Memory

Memory
Controller

L1
Cache

CPU
Core

L1
Cache

L2 Cache

L2 Cache

CPU
Core

Device

Memory

Memory
Controller

L1
Cache

CPU
Core

L1
Cache

L2 Cache

(1) CPU writes to memory
(2) CPU cleans L1 cache
(3) CPU cleans L2 cache
(4) Device reads from memory

1

2

3

4

Cache Coherent Interconnect

CPU
Core

Device

Memory

Memory
ControllerL1

Cache

CPU
Core

L1
Cache

L2 Cache

C
ac

h
e

C
o

h
er

en
t

In
te

rc
o

n
n

ec
t

Cache Coherent Interconnect

(1) CPU writes to memory
(2) Device reads from memory

CPU
Core

Device

Memory

Memory
ControllerL1

Cache

CPU
Core

L1
Cache

L2 Cache

C
ac

h
e

C
o

h
er

en
t

In
te

rc
o

n
n

ec
t

1

2

IOMMU

CPU
Core

Device

Memory

Memory
ControllerL1

Cache

CPU
Core

L1
Cache

L2 Cache

C
ac

h
e

C
o

h
er

en
t

In
te

rc
o

n
n

ec
t

IO
M

M
U

IOMMU

CPU
Core

Device

Memory

Memory
ControllerL1

Cache

CPU
Core

L1
Cache

L2 Cache

C
ac

h
e

C
o

h
er

en
t

In
te

rc
o

n
n

ec
t

IO
M

M
U

(1) CPU writes to memory
(2) CPU programs the IOMMU
(3) Device reads from memory

1

2

3

Even More Complex

Even More Complex

Memory
Mappings

● Fully Coherent
Coherent (or consistent) memory is memory for which a write by either the
device or the processor can immediately be read by the processor or device
without having to worry about caching effects.

Consistent memory can be expensive on some platforms, and the minimum
allocation length may be as big as a page.

Memory Mapping Types

● Write Combining

Writes to the mapping may be buffered to improve performance. You need to
make sure to flush the processor's write buffers before telling devices to read
that memory. This memory type is typically used for (but not restricted to)
graphics memory.

Memory Mapping Types

● Weakly Ordered

Reads and writes to the mapping may be weakly ordered, that is that reads
and writes may pass each other. Not all architectures support non-cached
weakly ordered mappings.

Memory Mapping Types

● Non-Coherent
This memory mapping type permits speculative reads, merging of accesses
and (if interrupted by an exception) repeating of writes without side effects.
Accesses to non-coherent memory can always be buffered, and in most
situations they are also cached (but they can be configured to be uncached).
There is no implicit ordering of non-coherent memory accesses. When not
explicitly restricted, the only limit to how out-of-order non-dependent accesses
can be is the processor's ability to hold multiple live transactions.

When using non-coherent memory mappings you are guaranteeing to the
platform that you have all the correct and necessary sync points for this
memory in the driver.

Memory Mapping Types

Cache
Management

#include <asm/cacheflush.h>

Cache Management API

#include <asm/cacheflush.h>
#include <asm/outercache.h>

Cache Management API

#include <asm/cacheflush.h>
#include <asm/outercache.h>

Cache Management API

Cache management operations are
architecture and device specific.

To remain portable, device drivers
must not use the cache handling
API directly.

Conclusion

DMA Mapping
API

● Allocate memory suitable for
DMA operations

● Map DMA memory to devices
● Map DMA memory to userspace
● Synchronize memory between

CPU and device domains

DMA Mapping API

#include <linux/dma-mapping.h>

DMA Mapping API

linux/dma-mapping.h
│
├─ linux/dma-attrs.h
├─ linux/dma-direction.h
├─ linux/scatterlist.h
│
#ifdef CONFIG_HAS_DMA
└─ asm/dma-mapping.h
#else
└─ asm-generic/dma-mapping-broken.h
#endif

DMA Mapping API

linux/dma-mapping.h
│
├─ linux/dma-attrs.h
├─ linux/dma-direction.h
├─ linux/scatterlist.h
│
└─ arch/arm/include/asm/dma-mapping.h
 │
 ├─ asm-generic/dma-mapping-common.h
 └─ asm-generic/dma-coherent.h

DMA Mapping API (ARM)

DMA Coherent
Mapping

/* asm-generic/dma-mapping.h */

void *
dma_alloc_coherent(struct device *dev, size_t size,
 dma_addr_t *dma_handle,
 gfp_t flag);

This routine allocates a region of @size bytes of coherent memory. It also
returns a @dma_handle which may be cast to an unsigned integer the same
width as the bus and used as the device address base of the region.

Returns: a pointer to the allocated region (in the processor's virtual address
space) or NULL if the allocation failed.

Note: coherent memory can be expensive on some platforms, and the
minimum allocation length may be as big as a page, so you should
consolidate your requests for consistent memory as much as possible. The
simplest way to do that is to use the dma_pool calls.

Coherent Allocation

/* asm-generic/dma-mapping.h */

void
dma_free_coherent(struct device *dev, size_t size,
 void *cpu_addr,
 dma_addr_t dma_handle);

Free memory previously allocated by dma_free_coherent(). Unlike with CPU
memory allocators, calling this function with a NULL cpu_addr is not safe.

Coherent Allocation

/* asm-generic/dma-mapping.h */

void *
dma_alloc_attrs(struct device *dev, size_t size,
 dma_addr_t *dma_handle, gfp_t flag,
 struct dma_attrs *attrs);

void
dma_free_attrs(struct device *dev, size_t size,
 void *cpu_addr, dma_addr_t dma_handle,
 struct dma_attrs *attrs);

Those two functions extend the coherent memory allocation API by allowing
the caller to specify attributes for the allocated memory. When @attrs is NULL
the behaviour is identical to the dma_*_coherent() functions.

Attribute-Based Allocation

● Allocation Attributes
– DMA_ATTR_WRITE_COMBINE

– DMA_ATTR_WEAK_ORDERING

– DMA_ATTR_NON_CONSISTENT

– DMA_ATTR_WRITE_BARRIER

– DMA_ATTR_FORCE_CONTIGUOUS

● Allocation and mmap Attributes
– DMA_ATTR_NO_KERNEL_MAPPING

● Map Attributes
– DMA_ATTR_SKIP_CPU_SYNC

All attributes are optional. An architecture that doesn't implement an attribute
ignores it and exhibit default behaviour.

(See Documentation/DMA-attributes.txt)

DMA Mapping Attributes

● DMA_ATTR_WRITE_COMBINE
DMA_ATTR_WRITE_COMBINE specifies that writes to the mapping may be
buffered to improve performance.

This attribute is only supported by the ARM and ARM64 architectures.

Additionally, the AVR32 architecture doesn't implement the attribute-based
allocation API but supports write combine allocation with the
dma_alloc_writecombine() and dma_free_writecombine() functions.

Memory Allocation Attributes

● DMA_ATTR_WEAK_ORDERING
DMA_ATTR_WEAK_ORDERING specifies that reads and writes to the
mapping may be weakly ordered, that is that reads and writes may pass each
other.

This attribute is only supported by the CELL architecture (and isn't used by
any driver).

Memory Allocation Attributes

● DMA_ATTR_NON_CONSISTENT
DMA_ATTR_NON_CONSISTENT lets the platform to choose to return either
consistent or non-consistent memory as it sees fit. By using this API, you are
guaranteeing to the platform that you have all the correct and necessary sync
points for this memory in the driver.

Only the OpenRISC architecture returns non-consistent memory in response
to this attribute. The ARC, MIPS and PARISC architectures don't support this
attribute but offer dedicated dma_alloc_noncoherent() and
dma_free_noncoherent() functions for the same purpose.

Memory Allocation Attributes

● DMA_ATTR_WRITE_BARRIER
DMA_ATTR_WRITE_BARRIER is a (write) barrier attribute for DMA. DMA to a
memory region with the DMA_ATTR_WRITE_BARRIER attribute forces all
pending DMA writes to complete, and thus provides a mechanism to strictly
order DMA from a device across all intervening buses and bridges. This
barrier is not specific to a particular type of interconnect, it applies to the
system as a whole, and so its implementation must account for the
idiosyncrasies of the system all the way from the DMA device to memory.

As an example of a situation where DMA_ATTR_WRITE_BARRIER would be
useful, suppose that a device does a DMA write to indicate that data is ready
and available in memory. The DMA of the “completion indication” could race
with data DMA. Mapping the memory used for completion indications with
DMA_ATTR_WRITE_BARRIER would prevent the race.

This attribute is only implemented by the SGI SN2 (IA64) subarchitecture.

Memory Allocation Attributes

● DMA_ATTR_FORCE_CONTIGUOUS
By default the DMA-mapping subsystem is allowed to assemble the buffer
allocated by the dma_alloc_attrs() function from individual pages if it can be
mapped contiguously into device DMA address space. By specifying this
attribute the allocated buffer is forced to be contiguous also in physical
memory.

This attribute is only supported by the ARM architecture.

Memory Allocation Attributes

● DMA_ATTR_NO_KERNEL_MAPPING
DMA_ATTR_NO_KERNEL_MAPPING lets the platform to avoid creating a
kernel virtual mapping for the allocated buffer. On some architectures creating
such mapping is non-trivial task and consumes very limited resources (like
kernel virtual address space or dma consistent address space). Buffers
allocated with this attribute can be only passed to user space by calling
dma_mmap_attrs(). By using this API, you are guaranteeing that you won't
dereference the pointer returned by dma_alloc_attr(). You can treat it as a
cookie that must be passed to dma_mmap_attrs() and dma_free_attrs(). Make
sure that both of these also get this attribute set on each call.

This attribute is only supported by the ARM architecture.

Memory Allocation Attributes

● DMA_ATTR_SKIP_CPU_SYNC
When a buffer is shared between multiple devices one mapping must be
created separately for each device. This is usually performed by calling the
DMA mapping functions more than once for the given buffer. The first call
transfers buffer ownership from CPU domain to device domain, which
synchronizes CPU caches for the given region. However, subsequent calls to
dma_map_*() for other devices will perform exactly the same potentially
expensive synchronization operation on the CPU cache.

DMA_ATTR_SKIP_CPU_SYNC allows platform code to skip synchronization
of the CPU cache for the given buffer assuming that it has been already
transferred to “device” domain. This is highly recommended but must be used
with care. This attribute can be also used for the DMA mapping functions to
force buffer to stay in device domain.

This attribute is only supported by the ARM architecture.

Memory Allocation Attributes

DMA Mask

/* asm/dma-mapping.h */

int dma_set_mask(struct device *dev, u64 mask),

/* linux/dma-mapping.h */

int dma_set_coherent_mask(struct device *dev, u64 mask);

int dma_set_mask_and_coherent(struct device *dev,
 u64 mask);

DMA Mask

/* linux/device.h */

struct device {
 ...
 u64 *dma_mask;
 u64 coherent_dma_mask;
 ...
};

/* linux/dma-mapping.h */

int dma_coerce_mask_and_coherent(struct device *dev,
 u64 mask);

DMA Mask

Userspace
Mapping

/* asm-generic/dma-mapping.h */

/* Implemented on arm, arm64 and powerpc */

int dma_mmap_attrs(struct device *dev,
 struct vm_area_struct *vma,
 void *cpu_addr,
 dma_addr_t dma_addr, size_t size,
 struct dma_attrs *attrs);

/* Wrappers */

int dma_mmap_coherent(...);
int dma_mmap_writecombine(...);

Userspace Mapping

int dma_mmap_attrs(struct device *dev,
 struct vm_area_struct *vma,
 void *cpu_addr,
 dma_addr_t dma_addr, size_t size,
 struct dma_attrs *attrs);

Map coherent or write-combine DMA memory previously allocated by
dma_alloc_attrs() into user space. The DMA memory must not be freed by
the driver until the user space mapping has been released.

Creating multiple mappings with different types (coherent, write-combined,
weakly ordered or non-coherent) produces undefined results on some
architectures. Care must be taken to specify the same type attributes for all
calls to the dma_alloc_attrs() and dma_mmap_attrs() functions for the same
memory.

If the memory has been allocated with the NO_KERNEL_MAPPING attribute
the same attribute must be passed to all calls to dma_mmap_attrs().

Userspace Mapping

/*
 * Implemented on arc, avr32, blackfin, cris, m68k and
 * metag
 */
int dma_mmap_coherent(struct device *dev,
 struct vm_area_struct *vma,
 void *cpu_addr,
 dma_addr_t dma_addr, size_t size);

/* Implemented on metag */
int dma_mmap_writecombine(struct device *dev,
 struct vm_area_struct *vma,
 void *cpu_addr,
 dma_addr_t dma_addr,
 size_t size);

Userspace Mapping

DMA
Streaming
Mapping

/* linux/dma-direction.h */

enum dma_data_direction {
 DMA_BIDIRECTIONAL = 0,
 DMA_TO_DEVICE = 1,
 DMA_FROM_DEVICE = 2,
 DMA_NONE = 3,
};

DMA Direction

/* asm-generic/dma-mapping.h */

dma_addr_t
dma_map_single_attrs(struct device *dev, void *ptr,
 size_t size,
 enum dma_data_direction dir,
 struct dma_attrs *attrs);

void
dma_unmap_single_attrs(struct device *dev,
 dma_addr_t addr, size_t size,
 enum dma_data_direction dir,
 struct dma_attrs *attrs);

dma_addr_t dma_map_single(...);
void dma_unmap_single(...);

Device Mapping

/* asm-generic/dma-mapping.h */

dma_addr_t
dma_map_page(struct device *dev, struct page *page,
 size_t offset, size_t size,
 enum dma_data_direction dir);

void
dma_unmap_page(struct device *dev, dma_addr_t addr,
 size_t size, enum dma_data_direction dir);

Device Mapping

/* asm-generic/dma-mapping.h */

int
dma_map_sg_attrs(struct device *dev,
 struct scatterlist *sg, int nents,
 enum dma_data_direction dir,
 struct dma_attrs *attrs);

void
dma_unmap_sg_attrs(struct device *dev,
 struct scatterlist *sg,
 int nents,
 enum dma_data_direction dir,
 struct dma_attrs *attrs);

int dma_map_sg(...);
void dma_unmap_sg(...);

Device Mapping

/* asm/dma-mapping.h */

int
dma_mapping_error(struct device *dev,
 dma_addr_t dma_addr);

In some circumstances dma_map_*() will fail to create
a mapping. A driver can check for these errors by testing the returned DMA
address with dma_mapping_error(). A non-zero return value means the
mapping could not be created and the driver should take appropriate action
(e.g. reduce current DMA mapping usage or delay and try again later).

Error Checking

/* asm-generic/dma-mapping.h */

void
dma_sync_single_for_cpu(struct device *dev,
 dma_addr_t addr, size_t size,
 enum dma_data_direction dir);

void
dma_sync_single_for_device(struct device *dev,
 dma_addr_t addr, size_t size,
 enum dma_data_direction dir);

Synchronization

/* asm-generic/dma-mapping.h */

void
dma_sync_single_for_*(struct device *dev,
 dma_addr_t addr, size_t size,
 enum dma_data_direction dir);

void
dma_sync_single_range_for_*(struct device *dev,
 dma_addr_t addr,
 unsigned long offset,
 size_t size,
 enum dma_data_direction dir);

void
dma_sync_sg_for_*(struct device *dev,
 struct scatterlist *sg, int nelems,
 enum dma_data_direction dir);

(* = cpu or device)

Synchronization

Contiguous
Memory

Allocation

#include <linux/dma-contiguous.h>

drivers/base/dma-contiguous.h

CMA

From a Driver Point of View

From a Driver Point of View

The Contiguous Memory Allocator (CMA) is integrated in the
DMA mapping implementation. Drivers will automatically receive
contiguous memory when using the dma_alloc_coherent() and
dma_alloc_attrs() API.

/* linux/dma-contiguous.h */

void dma_contiguous_reserve(phys_addr_t addr_limit);

int dma_declare_contiguous(struct device *dev,
 phys_addr_t size,
 phys_addr_t base,
 phys_addr_t limit);

From a System Point of View

/* linux/dma-contiguous.h */

void dma_contiguous_reserve(phys_addr_t addr_limit);

This function reserves memory from early allocator. It should be called by arch
specific code once the early allocator (memblock or bootmem) has been
activated and all other subsystems have already allocated/reserved memory.

The size of the reserved memory area is specified through the kernel
configuration and can be overridden on the kernel command line. An area of
the given size is reserved from the early allocator for contiguous allocation.

int dma_declare_contiguous(struct device *dev,
 phys_addr_t size,
 phys_addr_t base,
 phys_addr_t limit);

This function reserves memory for the specified device. It should be called by
board specific code when early allocator (memblock or bootmem) has been
activated.

From a System Point of View

IOMMU
Integration

#include <linux/iommu.h>

IOMMU API

/* linux/iommu.h */

struct iommu_domain *
iommu_domain_alloc(struct bus_type *bus);
void iommu_domain_free(struct iommu_domain *domain);

int iommu_attach_device(struct iommu_domain *domain,
 struct device *dev);
void iommu_detach_device(struct iommu_domain *domain,
 struct device *dev);

int iommu_map(struct iommu_domain *domain,
 unsigned long iova, phys_addr_t paddr,
 size_t size, int prot);
size_t iommu_unmap(struct iommu_domain *domain,
 unsigned long iova, size_t size);

IOMMU API

/* asm/dma-mapping.h */

struct dma_iommu_mapping *
arm_iommu_create_mapping(struct bus_type *bus,
 dma_addr_t base, size_t size);
void arm_iommu_release_mapping(
 struct dma_iommu_mapping *mapping);

int arm_iommu_attach_device(struct device *dev,
 struct dma_iommu_mapping *mapping);
void arm_iommu_detach_device(struct device *dev);

IOMMU Integration (ARM)

“Someone” must create the ARM mapping and attach devices.

To achieve transparent IOMMU integration the calls must be
moved from device drivers to IOMMU drivers. This creates new
challenges:

● Devices might need fine-grained control over the IOMMU
(such as mapping memory at a fixed device address). They
would then need to manage the IOMMU in cooperation with
the DMA mapping API.

● Devices might have several bus master ports connected to
different IOMMUs, while the DMA mapping API operates at
the device level.

● Power management needs to be taken care of.

IOMMU Integration (ARM)

Device Tree
Bindings

[PATCH v7 0/4] Device Tree support for
CMA (Contiguous Memory Allocator)

http://lwn.net/Articles/564830/

Device Tree Bindings – CMA

Documentation/devicetree/bindings/iommu

Device Tree Bindings – IOMMU

Tips & Tricks

● Use the correct API, choose wisely between coherent and
streaming mappings.

● Don't try to manage the cache manually, it's bound to fail.
● Set your DMA masks.
● Use dma_mapping_error().

Coherent Mappings

● Set the DMA_ATTR_SKIP_CPU_SYNC when calling
dma_map_*().

● Don't call dma_sync_*().

Tips & Tricks

Problems &
Issues

Generic Problems

● Coherent mappings and streaming mappings exhibit different
performances depending on the use case, which should be configurable
from userspace.

● Lack of standard DT bindings for IOMMUs.
● Coherent and non-coherent masks are confusing and badly implemented.
● Headers hierarchy is confusing.
● The dma_sync_*() API has no attributes and thus can't skip CPU cache

synchronization for coherent mappings.

ARM-Specific Problems

● Lack of non-coherent allocation.
● Flushing a cache range can be less efficient than flushing the whole D-

cache.
● The DMA mask is not taken into account when creating IOMMU

mappings.

Problems & Issues

Resources

•Documentation/DMA-API-HOWTO.txt
•Documentation/DMA-API.txt
•Documentation/DMA-attributes.txt

•http://community.arm.com/groups/proce
ssors/blog/2011/03/22/memory-access-
ordering-an-introduction

•http://elinux.org/images/7/73/Deacon-
weak-to-weedy.pdf

•https://lwn.net/Articles/486301/

Documentation

• linux-kernel@vger.kernel.org
• linux-arm-kernel@lists.infradead.org

• laurent.pinchart@ideasonboard.com

Contact

? !

Thx.

Advanced
Topics

DMA Coherent
Memory Pool

/* linux/dmapool.h */

The DMA mapping API allocates buffers in at least page size chunks. If your
driver needs lots of smaller memory regions you can use the DMA pool API to
subdivide pages returned by dma_alloc_coherent().

struct dma_pool *
dma_pool_create(const char *name, struct device *dev,
 size_t size, size_t align,
 size_t boundary);

This function creates a DMA allocation pool to allocate buffers of the given
@size and alignment characteristics (@ must be a power of two and can be
set to zero). If @boundary is nonzero, objects returned from dma_pool_alloc()
won't cross that size boundary. This is useful for devices which have
addressing restrictions on individual DMA transfers.

Given one of these pools, dma_pool_alloc() may be used to allocate memory.
Such memory will all have “consistent” DMA mappings, accessible by the
device and its driver without using cache flushing primitives.

DMA Pool

/* linux/dmapool.h */

void dma_pool_destroy(struct dma_pool *pool);

Destroy a DMA pool. The caller guarantees that no more memory from the
pool is in use,and that nothing will try to use the pool after this call. A DMA
pool can't be destroyed in interrupt context.

void *dma_pool_alloc(struct dma_pool *pool,
 gfp_t mem_flags,
 dma_addr_t *handle);

This returns the kernel virtual address of a currently unused block, and reports
its DMA address through the handle. Return NULL when allocation fails.

void dma_pool_free(struct dma_pool *pool, void *vaddr,
 dma_addr_t addr);

Puts memory back into the pool. The CPU (vaddr) and DMA addresses are
what were returned when dma_pool_alloc() allocated the memory being freed.

DMA Pool

Non-
Coherent
Mapping

/* asm-generic/dma-mapping.h */

void *
dma_alloc_noncoherent(struct device *dev, size_t size,
 dma_addr_t *dma_handle,
 gfp_t flag);

void
dma_free_noncoherent(struct device *dev, size_t size,
 void *cpu_addr,
 dma_addr_t dma_handle);

Non-Coherent Allocation

The non-coherent memory allocation is architecture-dependent. The following
list summarizes the behaviour of supported architectures.

● Allocates Normal Cacheable Memory

arc, mips, openrisc, parisc

● Allocates Coherent Memory

alpha, avr32, blackfin, c6x, cris, frv, hexagon, ia64, m68k, metag,
microblaze, mn10300, powerpc, s390, sh, sparc, tile, unicore32, x86,
xtensa

Note that some of those architectures can be fully coherent, in which case
the concept of non-coherent memory doesn't apply and memory mappings
are always coherent.

● Returns NULL

arm, arm64

Non-Coherent Allocation

Generic DMA
Coherent
Memory
Allocator

/* asm-generic/dma-coherent.h */

/*
 * Standard interface
 */
#define ARCH_HAS_DMA_DECLARE_COHERENT_MEMORY
extern int
dma_declare_coherent_memory(struct device *dev,
 dma_addr_t bus_addr,
 dma_addr_t device_addr,
 size_t size, int flags);

extern void
dma_release_declared_memory(struct device *dev);

extern void *
dma_mark_declared_memory_occupied(struct device *dev,
 dma_addr_t device_addr,
 size_t size);

Device API

/* asm-generic/dma-coherent.h */

extern int
dma_declare_coherent_memory(struct device *dev,
 dma_addr_t bus_addr,
 dma_addr_t device_addr,
 size_t size, int flags);

Declare a coherent memory area for a device. The area is specified by its
(CPU) bus address, device bus address and size. The following flags can be
specified:

● DMA_MEMORY_MAP – allocated memory is directly writable (always set).
● DMA_MEMORY_IO – allocated memory accessed as I/O mem (unused).
● DMA_MEMORY_INCLUDES_CHILDREN – declared memory available to

all child devices (unsupported).
● DMA_MEMORY_EXCLUSIVE – force allocation to be made exclusively

from the coherent area for this device without any fallback method.

Only a single coherent memory area can be declared per device.

Device API

/* asm-generic/dma-coherent.h */

extern void
dma_release_declared_memory(struct device *dev);

Release the coherent memory previously declared for the device. All DMA
coherent memory allocated for the device must be freed before calling this
function.

Device API

/* asm-generic/dma-coherent.h */

extern void *
dma_mark_declared_memory_occupied(struct device *dev,
 dma_addr_t device_addr,
 size_t size);

Mark part of the coherent memory area as unusable for DMA coherent
memory allocation. Multiple ranges can be marked as occupied.

This function is used by the NCR_Q720 SCSI driver only to reserve the first
kB. In this specific case this could be handled by declaring a coherent region
that skips the first page.

Device API

/* asm-generic/dma-coherent.h */

/*
 * These three functions are only for dma allocator.
 * Don't use them in device drivers.
 */

Allocator Private API

/* asm-generic/dma-coherent.h */

/*
 * These three functions are only for dma allocator.
 * Don't use them in device drivers.
 */
int dma_alloc_from_coherent(struct device *dev,
 ssize_t size,
 dma_addr_t *dma_handle,
 void **ret);
int dma_release_from_coherent(struct device *dev,
 int order, void *vaddr);
int dma_mmap_from_coherent(struct device *dev,
 struct vm_area_struct *vma,
 void *cpu_addr, size_t size,
 int *ret);

Allocator Private API

/* asm-generic/dma-coherent.h */

int dma_alloc_from_coherent(struct device *dev,
 ssize_t size,
 dma_addr_t *dma_handle,
 void **ret);

Try to allocate memory from the per-device coherent area.

Returns 0 if dma_alloc_coherent should continue with allocating from
generic memory areas, or !0 if dma_alloc_coherent should return @ret.

This function can only be called from per-arch dma_alloc_coherent (and
dma_alloc_attrs) to support allocation from per-device coherent memory
pools.

Allocator Private API

/* asm-generic/dma-coherent.h */

int dma_release_from_coherent(struct device *dev,
 int order, void *vaddr);

Try to free the memory allocated from per-device coherent memory pool.

This checks whether the memory was allocated from the per-device
coherent memory pool and if so, releases that memory and returns 1.
Otherwise it returns 0 to signal that the caller should proceed with releasing
memory from generic pools.

This function can only be called from within the architecture's
dma_free_coherent (and dma_free_attrs) implementation.

Allocator Private API

/* asm-generic/dma-coherent.h */

int dma_mmap_from_coherent(struct device *dev,
 struct vm_area_struct *vma,
 void *cpu_addr, size_t size,
 int *ret);

Try to mmap the memory allocated from per-device coherent memory pool
to userspace.

This checks whether the memory was allocated from the per-device
coherent memory pool and if so, maps that memory to the provided vma and
returns 1. Otherwise it returns 0 to signal that the caller should proceed with
mapping memory from generic pools.

This function can only be called from within the architecture's
dma_alloc_coherent (and dma_alloc_attrs) implementation.

Allocator Private API

