
mentor.com/embedded

Android	 is	 a	 trademark	 of	 Google	 Inc.	 Use	 of	 this	 trademark	 is	 subject	 to	 Google	 Permissions.	
Linux	 is	 the	 registered	 trademark	 of	 Linus	 Torvalds	 in	 the	 U.S.	 and	 other	 countries.	

Sean Hudson
Embedded Linux Architect &

Member of Technical Staff

Case Study: Building a High Quality
Video Pipeline Using GStreamer and

V4Linux on an i.MX6

2
mentor.com/embedded

2

Who am I?

n  Embedded Linux Architect at
Mentor Embedded, a division of
Mentor Graphics

n  Member of the OpenEmbedded
Project’s board

n  Former representative to the
Advisory Board for the Yocto
Project

ELCE 2014 – Dusseldorf, Germany

3
mentor.com/embedded

3

What’s this presentation for?
n  Intended audience

—  Aimed at those considering a Linux based video project,
specifically on an i.MX6 board

n  What will be covered?
—  Key technologies used to build the product

—  What we learned (good, bad, & ugly)

n  Primary goal of this presentation

—  Help folks get a running start on a similar project

ELCE 2014 – Dusseldorf, Germany

4
mentor.com/embedded

4

Outline

n  Project Background

n  Hardware Components
n  Software Components

n  Final Thoughts

ELCE 2014 – Dusseldorf, Germany

5
mentor.com/embedded

5

PROJECT BACKGROUND

ELCE 2014 – Dusseldorf, Germany

6
mentor.com/embedded

6

Project Background
n  Services engagement that ran from the end of 2012 – the

end of 2013
n  Replacing an older, FPGA based design
n  A customized, portable design based on the i.MX6
n  Device processes and displays video from two

independent sensors
n  Device output to a built-in OLED display or a connected

HDMI monitor
n  Displays sensor input either singly or combined
n  Sensor 1 input was 1280x1024 at up to 60 FPS
n  Sensor 2 input was 640x480 at up to 30 FPS
n  Desired latency for all modes was < 100ms at 30 FPS
n  Intended as a reusable platform for future products

ELCE 2014 – Dusseldorf, Germany

7
mentor.com/embedded

7

Starting, Known Project Challenges
n  Additional algorithmic processing of images would be

required, so CPU utilization should be kept as low as
possible

n  Customer wanted the complete software stack developed
in < 12 months

n  Hardware was in development and wasn’t scheduled to be
available for ~3 months

n  Several components were new, including the sensors

n  Small team, ~3 software engineers

ELCE 2014 – Dusseldorf, Germany

8
mentor.com/embedded

8

HARDWARE COMPONENTS

ELCE 2014 – Dusseldorf, Germany

9
mentor.com/embedded

9

i.MX6 - SOC
n  Quad-core Cortex A9
n  ARM NEON SIMD with each core

n  3D Graphics Processing Unit (GPU)
n  2x Image Processing Units (IPU)

n  Additional device and bus support
n  Had existing software support

ELCE 2014 – Dusseldorf, Germany

10
mentor.com/embedded

10

i.MX6 Hardware Availability Strategy
n  In order to account for the initial, scheduled delay of the

hardware, we opted to use Sabre Lite boards to begin
working on the software stack.

n  This proved to be quite valuable due to additional delays
in the actual hardware being available.

n  Take Away: If you are building a custom, i.MX6 design
for your video processing product, getting a reference
board, e.g. the Sabre-Lite, can allow some software
development to continue when the hardware is invariably
late.

ELCE 2014 – Dusseldorf, Germany

11
mentor.com/embedded

11

i.MX6 – IPU
n  Expectation:

—  IPU hardware accelerated conversion of sensor input and transfer
of data frames

n  Outcome:
—  The sensor selections prevented the hardware from being used

directly for some important frame conversion operations,
specifically, the input frame format was not understood by the
IPUs and so a raw data mode was used to transfer data from the
bus into the video pipeline, however, frame conversion was
required in software that wasn’t expected.

—  Worked great for some things like re-sizing frames, but were in
limited supply and had to be carefully allocated to ensure that
contention over the IPU wouldn’t occur

ELCE 2014 – Dusseldorf, Germany

12
mentor.com/embedded

12

i.MX6 – NEON
n  Expectation:

—  NEON instructions would run in parallel with ARM core instructions
(offload)

—  NEON would provide significant computational resources that would
help fill the requirement for additional algorithms

n  Outcome:
—  The ARM core is tightly couple to NEON and can not be utilized

separately
—  This reduced the expected parallel computing capabilities of the

platform and increased contention for resources
—  We found that the NEON SIMD were well suited to the computations

required, however, we ran into issues with contention due to the
number of operations required of them

n  Takeaway
—  Managing the specific hardware resources assigned to a task

becomes critically important to meeting performance
targets. (See later slide on how we enforced this)

ELCE 2014 – Dusseldorf, Germany

13
mentor.com/embedded

13

Sensors
n  Expectation:

—  The sensors were connected via well defined interfaces and
would be able to utilize the IPU to transfer the frame, convert the
format for internal use, and resize, as necessary.

n  Outcome:
—  Both sensors output frames in a format that the IPU could not

handle directly.
—  “Raw Mode” transfers enabled the DMA transfer of the frames
—  Additional work was required to convert these frames into the

proper format for use in the GStreamer pipeline
—  IPU worked well to resize frames as well, but only after

conversion

n  Takeaway
—  The frame conversions dominated the work on this

project. They also consumed a significant amount of the
latency budget.

ELCE 2014 – Dusseldorf, Germany

14
mentor.com/embedded

14

i.MX6 Platform – GPU
n  Expectation:

—  GPU would provide a raw computation resource
—  openGL support, which was available, would provide efficient access

to the GPU processing capabilities

n  Outcome:
—  When the IPU frame conversion was not possible, the GPU was

selected to perform that operation
—  Sensor 1 output was in a Bayer BGGR format that required a

“demosaic” operation to get to a RGB format
—  Initial algorithm selected had a reference GLSL shader

implementation for the GPU
—  Unfortunately, the data transfer rates into the GPU were not enough

to sustain the target frame rate. We discovered that the frame rate
dropped linearly with the size of the data frame transferred

—  With several weeks lost to the effort, we made the decision to move
the processing to the NEON processor

ELCE 2014 – Dusseldorf, Germany

15
mentor.com/embedded

15

SOFTWARE COMPONENTS

ELCE 2014 – Dusseldorf, Germany

16
mentor.com/embedded

16

Mentor Embedded Linux (MEL)
n  MEL is based directly on The Yocto Project
n  Provides a reference rootfs image and kernel

n  Contains the Freescale BSP bits
n  Integrates with additional MGC tools, which became

important later
n  Seriously, I work for Mentor, is it any surprise that’s what

we used?

ELCE 2014 – Dusseldorf, Germany

17
mentor.com/embedded

17

Freescale i.MX6 BSP
n  Freescale publishes their BSP via a public, Yocto Project

layer

n  The BSP contains V4L drivers for their IPU sensor
interfaces that include DMA transfer support

n  The BSP version used contained kernel 3.0.35

n  It also contained GStreamer plugins compatible with
GStreamer base 0.10.36.

n  One of these plugins, mfw_v4lsrc, provided sensor frames
to the GStreamer pipeline

ELCE 2014 – Dusseldorf, Germany

18
mentor.com/embedded

18

i.MX6 Platform – MEL w/FSL BSP
n  Expectation:

—  MEL would provide solid base to begin work and also as basis for
future platform

n  Outcome:
—  MEL base worked as expected
—  Allowed an update in the middle of the project of the FSL BSP

release with minimal effort and impact
—  Allowed work to continue on Sabre-Lite when hardware was

delayed
—  Allowed work to begin and complete on the BSP for the new

project without impacting work that was underway for the rest of
the stack

—  MEL/FSL platform on i.MX6 is now being considered for additional
products at that customer

ELCE 2014 – Dusseldorf, Germany

19
mentor.com/embedded

19

Video4Linux (V4L)
n  API and driver framework that is part of the kernel and

provides support to video devices

n  Provides standard way for video devices to communicate
to userspace

n  Stable API that has been around for a while

n  For more information on V4L:
—  http://linuxtv.org/downloads/v4l-dvb-apis/index.html
—  http://www.linuxtv.org/wiki/index.php/Developer_Section

ELCE 2014 – Dusseldorf, Germany

20
mentor.com/embedded

20

Video4Linux (V4L)
n  The FSL BSP provided V4L drivers that connected directly

to the standard sensor inputs of the i.MX6.

n  These drivers largely worked as expected and provided
the frames, in raw mode, from the sensors with almost no
effort on our part.

—  One significant bug was found in a local timer/scheduler when
Gstreamer threads were created/destroyed rapidly under system
stress

n  Hooking these up to the pipeline was accomplished using
a plugin provided by the FSL BSP that wrapped the V4L
source with some FSL specifics, called mfw_v4lsrc.

ELCE 2014 – Dusseldorf, Germany

21
mentor.com/embedded

21

GStreamer
n  From Gstreamer.freedesktop.org:

—  “GStreamer is a library for constructing graphs of media-handling
components.”

n  It has a well defined API for the plugins
n  It allows for components to be re-ordered, inserted, and

dropped, dynamically
n  GStreamer was chosen due to the flexibility of the

architecture and immediate availability in MEL
n  In the end, the GStreamer plugin work took most of the

available schedule
n  Takeaway

—  Make sure you know what the quality level is of any open
plugins that you plan to use. Also, plan to have to re-
write or modify some regardless of their quality.

ELCE 2014 – Dusseldorf, Germany

22
mentor.com/embedded

22

GStreamer – Good, Bad, & Ugly
n  GStreamer plugins are collected into three broad

categories:
—  Good - plug-ins that have good quality code, correct functionality,

and preferred licensing
—  Bad – plug-ins that aren't up to par compared to the rest

—  Ugly - plug-ins that have good quality and correct functionality,
but distributing them might pose problems

n  During development a “good” plugin, videomixer, was
substantially reworked to enhance stability and
performance for merging video streams together

n  Takeaway
—  Make sure you know what the quality level is of any open

plugins that you plan to use. Also, plan to have to re-
write or modify some regardless of their quality.

ELCE 2014 – Dusseldorf, Germany

23
mentor.com/embedded

23

GStreamer – Thread control
n  Gstreamer, as of the version we used, did not give direct

control to the threading
n  Threads were created internally to the base framework
n  Threads are created/destroyed quickly depending on your

system and creates a fair amount of overhead by itself
n  We discovered that by inserting a “queue” element into

the pipeline, we could force GStreamer to create a new
thread

n  Takeaway
—  Make sure you know what the quality level is of any open

plugins that you plan to use. Also, plan to have to re-
write or modify some regardless of their quality.

ELCE 2014 – Dusseldorf, Germany

24
mentor.com/embedded

24

GStreamer – Resource Contention
n  We found that GStreamer threads would many times

starve each other due to unnecessary resource contention

n  Our hardware budgeting/allocation needed to have a way
to force operations to occur on a specific core

n  We modified the “queue” element to accept a CPU affinity
parameter that allowed us to accomplish this task

ELCE 2014 – Dusseldorf, Germany

25
mentor.com/embedded

25

GStreamer – DMA buffers
n  The Freescale GStreamer plugins were *very* finicky

about using DMA buffers

n  We discovered that certain plugin combinations would not
use a DMA-able buffer and the final transfer to the display
would require an additional copy of the frame

n  This *killed* performance quickly

n  To overcome this issue, we wrote a new element that
“fooled” the elements into using the correct, DMA buffers

ELCE 2014 – Dusseldorf, Germany

26
mentor.com/embedded

26

GStreamer – gst-launch
n  GStreamer provides a command line tool to launch a

pipeline

n  While useful for testing, it quickly becomes cumbersome

n  Learn how to use it, but be ready to figure out how to
create the same thing in code

ELCE 2014 – Dusseldorf, Germany

usr/bin/gst-launch --gst-debug-no-color videomixer2 name=mixer background=4 sink_1::alpha=0.5 sink_0::alpha=1 \
! queue name=output cpu=4max-size-buffers=1min-threshold-buffers=1\
! mfw_v4lsink sync=falseqos=false\
mfw_v4lsrc name=TI fps-n=30fps-d=1device=/dev/video0 pixel-format=3cpu=4\ ! 'video/x-raw-
gray,bpp=8,width=640,height=480,framerate=30/1'\
! gray2rgb crop-left=2crop-right=6\
! 'video/x-raw-rgb,bpp=24,depth=24,framerate=30/1'\
! mgc_hwbpool pool-size=8\
! mfw_ipucsc crop-top=8crop-bottom=8\
! 'video/x-raw-rgb,bpp=24,depth=24,width=800,height=600'! mgc_hwbpool pool-size=8\ ! mixer. \
mfw_v4lsrc pixel-format=2device=/dev/video1 fps-n=60fps-d=1cpu=2num-buffers=4000 \
! 'video/x-raw-bayer,format=bggr,width=1280,height=960'\
! frameavg omit-avg=false\
! queue name=bayer cpu=3max-size-buffers=1min-threshold-buffers=1\
! bayerneon2 crop-left=2crop-right=6\
! 'video/x-raw-rgb,bpp=24,depth=24,framerate=30/1'\
! queue name=qTV cpu=2max-size-buffers=1min-threshold-buffers=1\
! mgc_hwbpool pool-size=8buffer-size=3686400\
! mfw_ipucsc crop-top=8crop-bottom=8\
! 'video/x-raw-rgb,bpp=24,depth=24,width=800,height=600'! mgc_hwbpool pool-size=8\ ! mixer.

27
mentor.com/embedded

27

GStreamer – Performance analysis
n  Gstreamer can report some statistics, but not all plugins

handle that data correctly and not all plugins report that
data correctly

n  In order to analyze the performance of the pipeline, we
instrumented the GStreamer pipeline and put it through a
visualization tool to help us identify issues

ELCE 2014 – Dusseldorf, Germany

28
mentor.com/embedded

28

GStreamer – Performance analysis

ELCE 2014 – Dusseldorf, Germany

29
mentor.com/embedded

29

FINAL THOUGHTS

ELCE 2014 – Dusseldorf, Germany

30
mentor.com/embedded

30

Final Thoughts
n  Sensor frame input format took a lot of unexpected work

to address, pay close attention to the formats needed to
display versus the format the sensors produce

n  DMA support is critical for the pipeline to work efficiently
(zero-copy). Expect to spend time making elements of a
GStreamer video chain handle DMA buffers correctly.

n  The FSL BSP has revved since this work, it now contains a
3.10.17 kernel and a GStreamer 1.0 version.

—  Reportedly many improvements in later version of GStreamer
around buffer handling and thread control

n  Even with the moderately conservative plan I put in place
early in the process, we had to push very hard to hit the
final milestone on time.

ELCE 2014 – Dusseldorf, Germany

31
mentor.com/embedded

31

QUESTIONS?

ELCE 2014 – Dusseldorf, Germany

