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Why should you care?
"You" as software developer or ops engineer
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you as a SW engineer
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with Ada.Text IO;

procedure Hello World is
use Ada.Text IO;
begin
Put_Line("Hello, world!");
end;

#include <stdio.h>

int main()

—~

printf("Hello, world!\n");

package main

import "fmt"

func main() {

fmt.Println("Hello, world!")
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you as a software engineer

A standard image format allows you to...

e build your containerimages how you want

e distribute them in a consistent, secure way
under your control

® re-use other people's container images with
whatever tooling you want

e run them anywhere that supports the format
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you as an ops engineer



your

3

.

3



example.com/app
) €

U

o



example.com/app
) €

J
your

—a



example.com/app
) €

J
your o O



you as an ops engineer

A standard image format allows you to...

e deploy your developers' images + third-party
images securely and consistently in the cluster

e use your tooling of choice to process and run
container images

e iIntrospect and audit containerimages
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How did we get here?

The abbreviated journey to OClI
(since ~2013)



First: an abbreviated
history of containers



First: an abbreviated
history of containers

where "containers" = "Linux containers"



Pre-2013: the early (Linux) container era

e Roll-your-own process containers
o ulimit, cgroups, chroot, namespaces
o more focused on noisy-neighbour problem

® [ XC (since 2008)

o powerful, complex (ops more than dev)
o oriented more to "full-OS" containers



2013/14: dawn of application container age

Enter Docker

e easy-to-use, developer friendly

e popularised the application-centric container
e simple, centralised image distribution



2015/16: app containers go mainstream




ﬁi'?'docker

and the journey to standards
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A log collection daemon
An init system and process babysitter
A container image build system
A remote management API
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An image format
A container runtime
A log collection daemon
An init system and process babysitter
A container image build system
A remote management API



An image format
... the thing we want to standardise



Two years ago

Mid 2014



Docker Image Format Circa 2014

e Fluid format and evolution
o No specification, just implementation
o No guarantees of interoperability for other toolwriters

e Not content-addressable
o No way to verify integrity or leverage CAS

e No name delegation/discovery (e.g. MX records)
o Centralised/siloed distribution

e No mechanism for signing
o No way to attest content



23 months ago

December 2014



4. appC
App Container (appc)

github.com/appc



appc motivation

e Write down what a containerimage is so
anyone can build and run one

e Decompose the tooling and decentralise
distribution

e Introduce features that were lacking in other
container formats

e Two key areas: image format and runtime



appc image in a nutshell

e Image Format (ACI)

o what does an application consist of?

e Image Discovery
o how can animage be located?

e Content-addressability
o whatis the cryptographic id of an image?

e Signing

o how is an image signed and verified?



appc image (ACI) example

{
Simple tarball, containing root ‘ackind": "ImageManifest”,
filesystem + configuration manifest acVersion®: "8.6.17,
"name"”: "my-app",
. "labels": [
$ tar.‘ t-F /tmp/my-app°aC1 llnamell: Ilosll) "Value": "]_inuX"}"
/manifest {"name": "arch", "value": "amd64"}
/rootfs N
/rootfs/bin "app": A
/rootfs/bin/my-app "exec": [ "/bin/my-app" 1],

"user": "1000",
"group": "1000"

}
}



appc runtime in a nutshell

e Application Container Executor (ACE)

o what environment can the application expect?
o e.g.isolators (memory, CPU), network, etc

e OS/Platform agnostic
e Pods

O Minimum execution unit (i.e. everything is a pod)
o Grouping of applications with shared fate



appc in practice

e Diversity of image tooling
o Build-from-scratch or build-from-language projects
m shell scripts, acbuild, dgr, goaci
o Convert from other packaging formats
m docker2aci,deb2aci

e Diversity of runtimes
o rkt (Linux)
o Kurma (Linux)
o Jetpack (FreeBSD)



19 Months Ago

April 2015



Docker v2.2 Image Format Circa 2015

e \ersionedv2.0,v2.1,v2.2 schema
o Still vendor-specific, but (mostly) documented!

e Content-addressable
e No name delegation/discovery
e Optional and separately-defined signing



Two separate worlds...

aka the "Container Wars"

® appc starting to see some traction, but
conspicuously lacking Docker support

e Meanwhile, Dockerimage format gaining
several of the key features that motivated appc



Two separate worlds...

e How can we end the "war" and all work
together?



Two separate worlds...

e How can we end the "war" and all work
together?

e Enter OCI!



17 Months Ago

June 2015



. OPEN vanes

AN OPEN GOVERNANCE STRUCTURE FOR THE
EXPRESS PURPOSE OF CREATING OPEN INDUSTRY

STANDARDS AROUND CONTAINER FORMATS AND
RUNTIME 3 -




Open Container Initiative (OClI)

e See: Chris's earlier talk :-)

e Original objective: merge everything we liked
from appc, then deprecate appc in favour of
OCl as the "true" standard

e However...



OCI Specification

e Originally only a runtime specification
o What a container looks like on disk, just before it is run
o A lot of system-specific state (e.g. mount/cgroup paths)
o Not a portable, distributable format
o Doesn't help with any of our earlier motivations



OCI Specification (runtime only)

e Several releases (v0.1.0 - v0.4.0)
e Continued disagreements and debate on scope
of the project... until...




7 Months Ago

April 2016
(blog post)


https://goo.gl/DJMmbL

OCI Image Format Spec Project

e Aserialized, distributable image format
o Content-addressable
o Platform-agnostic

e Optional extras:

o Signatures based on image content address
o Federated, delegatable naming based on DNS



OCI Image Format Spec Project

e Backwards-compatible with Docker:

o Taking the de facto standard Docker v2.2 format and
writing it down for everyone to use

e Shared starting point for future innovation in
container image format and distribution

e Intended to interoperate with Runtime Spec
(similar to how appc defined both sections)
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Today

15 November 2016
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Today

15 Nevember2616
2016-11-15 (ISO 8601 standard)



OCl Today

Two separate but connected specifications

e image-spec: what's in a container
e runtime-spec: how to run a container



OCl Image Spec

e Portable archive format
o "The thing to distribute"
o Structured tarball
e |Image Manifest, Manifest List, and Config
o Metadata about the containerimage
o References to layers, containing root filesystem
e Cryptographic addressability

o How to securely reference images and parts of images



Anatomy of an OCI Image

O H

"manifests": { "&nﬁg': {
s "platform"”: { "Cmd": [
/o/pbtlfna/ :pa\;aa i "0s" "linux", "ava", :—j ar"
i "app.jar"
/1lib/1libc i

{

e

manifest list




Inside the tarball

$ find busybox/
busybox/
busybox/refs
busybox/refs/latest
busybox/oci-layout
busybox/blobs
busybox/blobs/sha256

busybox/blobs/sha256/de9bddfe432. ..
busybox/blobs/sha256/56bec22e355...
busybox/blobs/sha256/e02e811ddes. ..



$ cat busybox/blobs/sha256/de9bddfe43...
{
"layers" : [
{ "digest" : "sha256:56bec22e355981d...",
"size" : 668151,
"mediaType" : application/vnd.oci.image.layer.vl.tar+gzip"
} 1
"mediaType" : "application/vnd.oci.image.manifest.vl+json",
"schemaVersion" : 2,
"config" : {
"digest" : "sha256:e02e811dde8fd49e7f6...",
"mediaType" : "application/vnd.oci.image.config.vl+json",
"size" : 1464



OCI Runtime Spec

e On-disk layout of a container

o Extracted root filesystem and configuration, ready to
run

e Lifecycle verbs
o create, start, kill, delete, state

e Multi-platform support

o Shared general configuration
o Windows/Solaris/Linux-specific bits



OCI Runtime Spec

Example: container state
{

"ociVersion": "v1.0.0-rc2",
"id": "oci-containerl",
"status": "running",
"pid": 4422,
"bundlePath": "/containers/redis",
"annotations": {
"myKey": "myValue™
}
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Where are we going?

e Firstthings first: 1.0
o OCI Runtime Spec and OCl Image Spec 1.0

e Minimum viable product we can all agree on
e ETA:1-2 monthsto finish release candidate
process for both specifications



Where are we going?

e OCIImage Spec 1.0+

o Image signatures
https://github.com/opencontainers/image-spec/issues/400

https://github.com/opencontainers/image-spec/issues/22

o Image distribution
https://github.com/opencontainers/image-spec/issues/15

o Image dependencies

https://github.com/opencontainers/image-spec/issues/102


https://github.com/opencontainers/image-spec/issues/400
https://github.com/opencontainers/image-spec/issues/400
https://github.com/opencontainers/image-spec/issues/22
https://github.com/opencontainers/image-spec/issues/22
https://github.com/opencontainers/image-spec/issues/15
https://github.com/opencontainers/image-spec/issues/15
https://github.com/opencontainers/image-spec/issues/102
https://github.com/opencontainers/image-spec/issues/102

Where are we going?

e OCI| Runtime Spec 1.0+

o Live container updates?

https://github.com/opencontainers/runtime-spec/issues/17
https://github.com/opencontainers/runtime-spec/issues/305

o Virtualisation support?
https://github.com/opencontainers/runtime-spec/pull/405



https://github.com/opencontainers/runtime-spec/issues/17
https://github.com/opencontainers/runtime-spec/issues/17
https://github.com/opencontainers/runtime-spec/issues/305
https://github.com/opencontainers/runtime-spec/issues/305
https://github.com/opencontainers/runtime-spec/pull/405
https://github.com/opencontainers/runtime-spec/pull/405

Where are we going?

Goal: Standard container

e Common image format and runtime format

e Endusercanjust"run example.com/app"

e |dentity and signing, discovery and naming,
distribution all just work



Where are we going?

Goal: Enable innovation

Diverse ecosystem of tooling

Build systems (Cl integration, language integration)
Runtimes (virtualisation technologies?)

Distribution methods (torrents? IPFS?)
Orchestration platforms (Kubernetes, Mesos, Nomad)



Where are we going?

Goal: Ubiquity through organic adoption

e Industry-standard in the container ecosystem
e Supportin Kubernetes, Docker, Mesos, and more
e Magical world of interoperability!



Where are we going?

Join us!

e All OCl standards work happens in the open
e GitHub:

o https://github.com/opencontainers/image-spec
o https://github.com/opencontainers/runtime-spec
e Email;

o dev@opencontainers.org



https://github.com/opencontainers/image-spec
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
mailto:dev@opencontainers.org
mailto:dev@opencontainers.org
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Extra/unused slides



appc specifications

appc tried to define the application container
story from the end-to-end UX perspective:
o Users should be able to securely discover, download,

and run an application container with a simple
command-line (e.g. "run example.com/app")

appc specifies two key areas:

o image format
O runtime environment



Image formats: a summarised history

Docker v1 |appc Docker v2.2 | OCI (in progress)
Introduced 2013 December 2014 April 2015 April 2016
Content- No Yes Yes Yes
addressable
Signab|e No Yes, optional Yes, optional Yes, optional
Federated Yes Yes Yes Yes
namespace

No Yes No Yes

Delegatable DNS

namespace




OCI: other things

e Reference runtime implementation (runc)

o Widespread production use
o Integral part of Docker and many others

e Nascent tooling forimages and runtime
o image-tools, runtime-tools projects



