(& core0s

The Open Container Initiative
Establishing standards for an open ecosystem

Jonathan Boulle

@baronboulle | jonathan.boulle@coreos.com

A short agenda

Why do we care about standards?

Where have container standards come from?
Where are they now?

Where are they going?

A short agenda

e Why do we care about standards?

e Where have container standards come from?
e Where are they now?

e Where are they going?

Standards: why do we care?

Why should you care?

Standards: why do we care?

Why should you care?
"You" as software developer or ops engineer

you

you as a SW engineer

your

with Ada.Text IO;

procedure Hello World is
use Ada.Text IO;
begin
Put_Line("Hello, world!");
end;

#include <stdio.h>

int main()

—~

printf("Hello, world!\n");

package main

import "fmt"

func main() {

fmt.Println("Hello, world!")

AVESv I

your container
image

N~

/your/code

your /bin/java

/opt/app.jar
/1ib/1ibc

N

your

/your/code
/bin/python

/opt/app.py
/1ib/1ibc

N

your

example.com/app

N~ g
d474e8c57737625¢c

Signed By: Alice

yo ur d474e8c57737625¢C

you as a software engineer

A standard image format allows you to...

e build your containerimages how you want

e distribute them in a consistent, secure way
under your control

® re-use other people's container images with
whatever tooling you want

e run them anywhere that supports the format

you

you as an ops engineer

your

3

.

3

example.com/app
) €

U

o

example.com/app
) €

J
your

—a

example.com/app
) €

J
your o O

you as an ops engineer

A standard image format allows you to...

e deploy your developers' images + third-party
images securely and consistently in the cluster

e use your tooling of choice to process and run
container images

e iIntrospect and audit containerimages

oc:n

© TECTONIC {0 QuAy

((QUAY Repositories

€ 2 coreos/security-example

({
\
W

=

3

49%

Tutorial Docs Blog

38%

Image Vulnerabilities

CvE

b CVE-2014-9488 %

CVE-2015-8381 %

» CWE-2015-8380 %

CVE-2015-8472 %

CVE-2015-8390 %%

1.5

1.5

g

B 4f3f3b6e0b74

Running the World's Containers

Q +- P B obszumski -

Quay Security Scanner has detected 100 vulnerabilities.

1Y
A

1 Critical-level vulnerabilities.
1 High-level vulnerabilities.

38 Medium-level vulnerabilities.
49 Low-level vulnerabilities.
11 Negligible-level vulnerabilities.

PACKAGE

less

pcre3

pcre3

libpng

pcre3

458-2

1:8.31-2ubuntu2.1

1:8.31-2ubuntu.1

1.2.50-1ubuntu.14.04.1

1:8.31-2ubuntu2.1

© 1.2.50

lubuntu2.14.04.2

Filter Vulnerabilities

Only display vulnerabilities with fixes

Y <i1c:9b5ba39350219554926970..
Y <i1c:9b5ba39350219554926970..
EEETTY fi1c:9b5ba39350219554926970..

BT fite:9b5ba39350219554926970...

BT file:9b5ba39350219554926970..

A short agenda

e Why should we care about standards?

e Where have container standards come from?
e Where are they now?

e Where are they going?

A short agenda

Why should we care about standards?

Where have container standards come from?
Where are they now?

Where are they going?

How did we get here?

The journey to OCI

How did we get here?

The abbreviated journey to OClI
(since ~2013)

First: an abbreviated
history of containers

First: an abbreviated
history of containers

where "containers" = "Linux containers"

Pre-2013: the early (Linux) container era

e Roll-your-own process containers
o ulimit, cgroups, chroot, namespaces
o more focused on noisy-neighbour problem

® [XC (since 2008)

o powerful, complex (ops more than dev)
o oriented more to "full-OS" containers

2013/14: dawn of application container age

Enter Docker

e easy-to-use, developer friendly

e popularised the application-centric container
e simple, centralised image distribution

2015/16: app containers go mainstream

ﬁi'?'docker

and the journey to standards

ﬁi'?'docker

An image format
A container runtime
A log collection daemon
An init system and process babysitter
A container image build system
A remote management API

ﬁi'?'docker

An image format
A container runtime
A log collection daemon
An init system and process babysitter
A container image build system
A remote management API

An image format
... the thing we want to standardise

Two years ago

Mid 2014

Docker Image Format Circa 2014

e Fluid format and evolution
o No specification, just implementation
o No guarantees of interoperability for other toolwriters

e Not content-addressable
o No way to verify integrity or leverage CAS

e No name delegation/discovery (e.g. MX records)
o Centralised/siloed distribution

e No mechanism for signing
o No way to attest content

23 months ago

December 2014

4. appC
App Container (appc)

github.com/appc

appc motivation

e Write down what a containerimage is so
anyone can build and run one

e Decompose the tooling and decentralise
distribution

e Introduce features that were lacking in other
container formats

e Two key areas: image format and runtime

appc image in a nutshell

e Image Format (ACI)

o what does an application consist of?

e Image Discovery
o how can animage be located?

e Content-addressability
o whatis the cryptographic id of an image?

e Signing

o how is an image signed and verified?

appc image (ACI) example

{
Simple tarball, containing root ‘ackind": "ImageManifest”,
filesystem + configuration manifest acVersion®: "8.6.17,
"name"”: "my-app",
. "labels": [
$ tar.‘ t-F /tmp/my-app°aC1 llnamell: Ilosll) "Value": "]_inuX"}"
/manifest {"name": "arch", "value": "amd64"}
/rootfs N
/rootfs/bin "app": A
/rootfs/bin/my-app "exec": ["/bin/my-app" 1],

"user": "1000",
"group": "1000"

}
}

appc runtime in a nutshell

e Application Container Executor (ACE)

o what environment can the application expect?
o e.g.isolators (memory, CPU), network, etc

e OS/Platform agnostic
e Pods

O Minimum execution unit (i.e. everything is a pod)
o Grouping of applications with shared fate

appc in practice

e Diversity of image tooling
o Build-from-scratch or build-from-language projects
m shell scripts, acbuild, dgr, goaci
o Convert from other packaging formats
m docker2aci,deb2aci

e Diversity of runtimes
o rkt (Linux)
o Kurma (Linux)
o Jetpack (FreeBSD)

19 Months Ago

April 2015

Docker v2.2 Image Format Circa 2015

e \ersionedv2.0,v2.1,v2.2 schema
o Still vendor-specific, but (mostly) documented!

e Content-addressable
e No name delegation/discovery
e Optional and separately-defined signing

Two separate worlds...

aka the "Container Wars"

® appc starting to see some traction, but
conspicuously lacking Docker support

e Meanwhile, Dockerimage format gaining
several of the key features that motivated appc

Two separate worlds...

e How can we end the "war" and all work
together?

Two separate worlds...

e How can we end the "war" and all work
together?

e Enter OCI!

17 Months Ago

June 2015

. OPEN vanes

AN OPEN GOVERNANCE STRUCTURE FOR THE
EXPRESS PURPOSE OF CREATING OPEN INDUSTRY

STANDARDS AROUND CONTAINER FORMATS AND
RUNTIME 3 -

Open Container Initiative (OClI)

e See: Chris's earlier talk :-)

e Original objective: merge everything we liked
from appc, then deprecate appc in favour of
OCl as the "true" standard

e However...

OCI Specification

e Originally only a runtime specification
o What a container looks like on disk, just before it is run
o A lot of system-specific state (e.g. mount/cgroup paths)
o Not a portable, distributable format
o Doesn't help with any of our earlier motivations

OCI Specification (runtime only)

e Several releases (v0.1.0 - v0.4.0)
e Continued disagreements and debate on scope
of the project... until...

7 Months Ago

April 2016
(blog post)

https://goo.gl/DJMmbL

OCI Image Format Spec Project

e Aserialized, distributable image format
o Content-addressable
o Platform-agnostic

e Optional extras:

o Signatures based on image content address
o Federated, delegatable naming based on DNS

OCI Image Format Spec Project

e Backwards-compatible with Docker:

o Taking the de facto standard Docker v2.2 format and
writing it down for everyone to use

e Shared starting point for future innovation in
container image format and distribution

e Intended to interoperate with Runtime Spec
(similar to how appc defined both sections)

A short agenda

Why should we care about standards?

Where have container standards come from?
Where are they now?

Where are they going?

A short agenda

Why should we care about standards?
Where have container standards come from?
Where are they now?

Where are they going?

Today

15 November 2016

Today

15/11/20167
11/15/20167

2016411 H15

Today

15 Nevember2616
2016-11-15 (ISO 8601 standard)

OCl Today

Two separate but connected specifications

e image-spec: what's in a container
e runtime-spec: how to run a container

OCl Image Spec

e Portable archive format
o "The thing to distribute"
o Structured tarball
e |Image Manifest, Manifest List, and Config
o Metadata about the containerimage
o References to layers, containing root filesystem
e Cryptographic addressability

o How to securely reference images and parts of images

Anatomy of an OCI Image

O H

"manifests": { "&nﬁg': {
s "platform"”: { "Cmd": [
/o/pbtlfna/ :pa\;aa i "0s" "linux", "ava", :—j ar"
i "app.jar"
/1lib/1libc i

{

e

manifest list

Inside the tarball

$ find busybox/
busybox/
busybox/refs
busybox/refs/latest
busybox/oci-layout
busybox/blobs
busybox/blobs/sha256

busybox/blobs/sha256/de9bddfe432. ..
busybox/blobs/sha256/56bec22e355...
busybox/blobs/sha256/e02e811ddes. ..

$ cat busybox/blobs/sha256/de9bddfe43...
{
"layers" : [
{ "digest" : "sha256:56bec22e355981d...",
"size" : 668151,
"mediaType" : application/vnd.oci.image.layer.vl.tar+gzip"
} 1
"mediaType" : "application/vnd.oci.image.manifest.vl+json",
"schemaVersion" : 2,
"config" : {
"digest" : "sha256:e02e811dde8fd49e7f6...",
"mediaType" : "application/vnd.oci.image.config.vl+json",
"size" : 1464

OCI Runtime Spec

e On-disk layout of a container

o Extracted root filesystem and configuration, ready to
run

e Lifecycle verbs
o create, start, kill, delete, state

e Multi-platform support

o Shared general configuration
o Windows/Solaris/Linux-specific bits

OCI Runtime Spec

Example: container state
{

"ociVersion": "v1.0.0-rc2",
"id": "oci-containerl",
"status": "running",
"pid": 4422,
"bundlePath": "/containers/redis",
"annotations": {
"myKey": "myValue™
}

A short agenda

Why should we care about standards?
Where have container standards come from?
Where are they now?

Where are they going?

A short agenda

Why should we care about standards?
Where have container standards come from?
Where are they now?

e Where are they going?

Where are we going?

e Firstthings first: 1.0
o OCI Runtime Spec and OCl Image Spec 1.0

e Minimum viable product we can all agree on
e ETA:1-2 monthsto finish release candidate
process for both specifications

Where are we going?

e OCIImage Spec 1.0+

o Image signatures
https://github.com/opencontainers/image-spec/issues/400

https://github.com/opencontainers/image-spec/issues/22

o Image distribution
https://github.com/opencontainers/image-spec/issues/15

o Image dependencies

https://github.com/opencontainers/image-spec/issues/102

https://github.com/opencontainers/image-spec/issues/400
https://github.com/opencontainers/image-spec/issues/400
https://github.com/opencontainers/image-spec/issues/22
https://github.com/opencontainers/image-spec/issues/22
https://github.com/opencontainers/image-spec/issues/15
https://github.com/opencontainers/image-spec/issues/15
https://github.com/opencontainers/image-spec/issues/102
https://github.com/opencontainers/image-spec/issues/102

Where are we going?

e OCI| Runtime Spec 1.0+

o Live container updates?

https://github.com/opencontainers/runtime-spec/issues/17
https://github.com/opencontainers/runtime-spec/issues/305

o Virtualisation support?
https://github.com/opencontainers/runtime-spec/pull/405

https://github.com/opencontainers/runtime-spec/issues/17
https://github.com/opencontainers/runtime-spec/issues/17
https://github.com/opencontainers/runtime-spec/issues/305
https://github.com/opencontainers/runtime-spec/issues/305
https://github.com/opencontainers/runtime-spec/pull/405
https://github.com/opencontainers/runtime-spec/pull/405

Where are we going?

Goal: Standard container

e Common image format and runtime format

e Endusercanjust"run example.com/app"

e |dentity and signing, discovery and naming,
distribution all just work

Where are we going?

Goal: Enable innovation

Diverse ecosystem of tooling

Build systems (Cl integration, language integration)
Runtimes (virtualisation technologies?)

Distribution methods (torrents? IPFS?)
Orchestration platforms (Kubernetes, Mesos, Nomad)

Where are we going?

Goal: Ubiquity through organic adoption

e Industry-standard in the container ecosystem
e Supportin Kubernetes, Docker, Mesos, and more
e Magical world of interoperability!

Where are we going?

Join us!

e All OCl standards work happens in the open
e GitHub:

o https://github.com/opencontainers/image-spec
o https://github.com/opencontainers/runtime-spec
e Email;

o dev@opencontainers.org

https://github.com/opencontainers/image-spec
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
mailto:dev@opencontainers.org
mailto:dev@opencontainers.org

(& core0s

Jonathan Boulle

@baronboulle | jonathan.boulle@coreos.com | coreos.com

Thank you!

7\

¥

7\

P
\
\

¥

¥

\—‘\\
\ /
<
\ /
<
\ /
/
/7

&

¥

&

Extra/unused slides

appc specifications

appc tried to define the application container
story from the end-to-end UX perspective:
o Users should be able to securely discover, download,

and run an application container with a simple
command-line (e.g. "run example.com/app")

appc specifies two key areas:

o image format
O runtime environment

Image formats: a summarised history

Docker v1 |appc Docker v2.2 | OCI (in progress)
Introduced 2013 December 2014 April 2015 April 2016
Content- No Yes Yes Yes
addressable
Signab|e No Yes, optional Yes, optional Yes, optional
Federated Yes Yes Yes Yes
namespace

No Yes No Yes

Delegatable DNS

namespace

OCI: other things

e Reference runtime implementation (runc)

o Widespread production use
o Integral part of Docker and many others

e Nascent tooling forimages and runtime
o image-tools, runtime-tools projects

