
Jonathan Boulle
@baronboulle | jonathan.boulle@coreos.com

The Open Container Initiative
Establishing standards for an open ecosystem

A short agenda

● Why do we care about standards?
● Where have container standards come from?
● Where are they now?
● Where are they going?

A short agenda

● Why do we care about standards?
● Where have container standards come from?
● Where are they now?
● Where are they going?

Standards: why do we care?
Why should you care?

Standards: why do we care?
Why should you care?

"You" as software developer or ops engineer

you

you as a sw engineer

your

with Ada.Text_IO;

procedure Hello_World is

 use Ada.Text_IO;

begin

 Put_Line("Hello, world!");

end;

#include <stdio.h>

int main()

{

 printf("Hello, world!\n");

}

package main

import "fmt"

func main() {

fmt.Println("Hello, world!")

}

your container
image

your
/your/code
/bin/java

/opt/app.jar
/lib/libc

your
/your/code
/bin/python
/opt/app.py
/lib/libc

your example.com/app

d474e8c57737625c

your d474e8c57737625c

Signed By: Alice

you as a software engineer

A standard image format allows you to...
● build your container images how you want
● distribute them in a consistent, secure way

under your control
● re-use other people's container images with

whatever tooling you want
● run them anywhere that supports the format

you

you as an ops engineer

your

your

example.com/app
x3

your

example.com/app
x3

your

???

example.com/app
x3

you as an ops engineer

A standard image format allows you to...
● deploy your developers' images + third-party

images securely and consistently in the cluster
● use your tooling of choice to process and run

container images
● introspect and audit container images

A short agenda

● Why should we care about standards?
● Where have container standards come from?
● Where are they now?
● Where are they going?

A short agenda

● Why should we care about standards?
● Where have container standards come from?
● Where are they now?
● Where are they going?

How did we get here?
The journey to OCI

The abbreviated journey to OCI
(since ~2013)

How did we get here?

First: an abbreviated
history of containers

where "containers" = "Linux containers"

First: an abbreviated
history of containers

● Roll-your-own process containers
○ ulimit, cgroups, chroot, namespaces
○ more focused on noisy-neighbour problem

● LXC (since 2008)
○ powerful, complex (ops more than dev)
○ oriented more to "full-OS" containers

Pre-2013: the early (Linux) container era

Enter Docker
● easy-to-use, developer friendly
● popularised the application-centric container
● simple, centralised image distribution

2013/14: dawn of application container age

2015/16: app containers go mainstream

and the journey to standards

An image format
A container runtime

A log collection daemon
An init system and process babysitter

A container image build system
A remote management API

An image format
A container runtime

A log collection daemon
An init system and process babysitter

A container image build system
A remote management API

An image format
... the thing we want to standardise

Two years ago
Mid 2014

Docker Image Format Circa 2014
● Fluid format and evolution

○ No specification, just implementation
○ No guarantees of interoperability for other toolwriters

● Not content-addressable
○ No way to verify integrity or leverage CAS

● No name delegation/discovery (e.g. MX records)
○ Centralised/siloed distribution

● No mechanism for signing
○ No way to attest content

23 months ago
December 2014

App Container (appc)

github.com/appc

appc motivation

● Write down what a container image is so
anyone can build and run one

● Decompose the tooling and decentralise
distribution

● Introduce features that were lacking in other
container formats

● Two key areas: image format and runtime

appc image in a nutshell

● Image Format (ACI)
○ what does an application consist of?

● Image Discovery
○ how can an image be located?

● Content-addressability
○ what is the cryptographic id of an image?

● Signing
○ how is an image signed and verified?

appc image (ACI) example
{
 "acKind": "ImageManifest",
 "acVersion": "0.6.1",
 "name": "my-app",
 "labels": [
 {"name": "os", "value": "linux"},
 {"name": "arch", "value": "amd64"}
],
 "app": {
 "exec": ["/bin/my-app"],
 "user": "1000",
 "group": "1000"
 }
}

Simple tarball, containing root
filesystem + configuration manifest

$ tar tf /tmp/my-app.aci
/manifest
/rootfs
/rootfs/bin
/rootfs/bin/my-app

appc runtime in a nutshell

● Application Container Executor (ACE)
○ what environment can the application expect?
○ e.g. isolators (memory, CPU), network, etc

● OS/Platform agnostic
● Pods

○ Minimum execution unit (i.e. everything is a pod)
○ Grouping of applications with shared fate

appc in practice

● Diversity of image tooling
○ Build-from-scratch or build-from-language projects

■ shell scripts, acbuild, dgr, goaci
○ Convert from other packaging formats

■ docker2aci, deb2aci
● Diversity of runtimes

○ rkt (Linux)
○ Kurma (Linux)
○ Jetpack (FreeBSD)

19 Months Ago
April 2015

Docker v2.2 Image Format Circa 2015

● Versioned v2.0, v2.1, v2.2 schema
○ Still vendor-specific, but (mostly) documented!

● Content-addressable
● No name delegation/discovery
● Optional and separately-defined signing

Two separate worlds...

aka the "Container Wars"

● appc starting to see some traction, but
conspicuously lacking Docker support

● Meanwhile, Docker image format gaining
several of the key features that motivated appc

Two separate worlds...

● How can we end the "war" and all work
together?

Two separate worlds...

● How can we end the "war" and all work
together?

● Enter OCI!

17 Months Ago
June 2015

● See: Chris's earlier talk :-)

● Original objective: merge everything we liked
from appc, then deprecate appc in favour of
OCI as the "true" standard

● However...

Open Container Initiative (OCI)

● Originally only a runtime specification
○ What a container looks like on disk, just before it is run
○ A lot of system-specific state (e.g. mount/cgroup paths)
○ Not a portable, distributable format
○ Doesn't help with any of our earlier motivations

OCI Specification

● Several releases (v0.1.0 - v0.4.0)
● Continued disagreements and debate on scope

of the project... until...

OCI Specification (runtime only)

7 Months Ago
April 2016
(blog post)

https://goo.gl/DJMmbL

● A serialized, distributable image format
○ Content-addressable
○ Platform-agnostic

● Optional extras:
○ Signatures based on image content address
○ Federated, delegatable naming based on DNS

OCI Image Format Spec Project

● Backwards-compatible with Docker:
○ Taking the de facto standard Docker v2.2 format and

writing it down for everyone to use
● Shared starting point for future innovation in

container image format and distribution
● Intended to interoperate with Runtime Spec

(similar to how appc defined both sections)

OCI Image Format Spec Project

A short agenda

● Why should we care about standards?
● Where have container standards come from?
● Where are they now?
● Where are they going?

A short agenda

● Why should we care about standards?
● Where have container standards come from?
● Where are they now?
● Where are they going?

Today
15 November 2016

Today
15/11/2016?
11/15/2016?

2016年11月15日?

Today
15 November 2016

2016-11-15 (ISO 8601 standard)

Two separate but connected specifications
● image-spec: what's in a container
● runtime-spec: how to run a container

OCI Today

● Portable archive format
○ "The thing to distribute"
○ Structured tarball

● Image Manifest, Manifest List, and Config
○ Metadata about the container image
○ References to layers, containing root filesystem

● Cryptographic addressability
○ How to securely reference images and parts of images

OCI Image Spec

Anatomy of an OCI Image

$ find busybox/

busybox/

busybox/refs

busybox/refs/latest

busybox/oci-layout

busybox/blobs

busybox/blobs/sha256

busybox/blobs/sha256/d09bddf0432...

busybox/blobs/sha256/56bec22e355...

busybox/blobs/sha256/e02e811dd08...

Inside the tarball

$ cat busybox/blobs/sha256/d09bddf043...

{

 "layers" : [

 { "digest" : "sha256:56bec22e355981d...",

 "size" : 668151,

 "mediaType" : application/vnd.oci.image.layer.v1.tar+gzip"

 }],

 "mediaType" : "application/vnd.oci.image.manifest.v1+json",

 "schemaVersion" : 2,

 "config" : {

 "digest" : "sha256:e02e811dd08fd49e7f6...",

 "mediaType" : "application/vnd.oci.image.config.v1+json",

 "size" : 1464

 }

● On-disk layout of a container
○ Extracted root filesystem and configuration, ready to

run
● Lifecycle verbs

○ create, start, kill, delete, state

● Multi-platform support
○ Shared general configuration
○ Windows/Solaris/Linux-specific bits

OCI Runtime Spec

Example: container state
{
 "ociVersion": "v1.0.0-rc2",
 "id": "oci-container1",
 "status": "running",
 "pid": 4422,
 "bundlePath": "/containers/redis",
 "annotations": {
 "myKey": "myValue"
 }
}

OCI Runtime Spec

A short agenda

● Why should we care about standards?
● Where have container standards come from?
● Where are they now?
● Where are they going?

A short agenda

● Why should we care about standards?
● Where have container standards come from?
● Where are they now?
● Where are they going?

Where are we going?

● First things first: 1.0
○ OCI Runtime Spec and OCI Image Spec 1.0

● Minimum viable product we can all agree on
● ETA: 1-2 months to finish release candidate

process for both specifications

Where are we going?

● OCI Image Spec 1.0+
○ Image signatures

https://github.com/opencontainers/image-spec/issues/400
https://github.com/opencontainers/image-spec/issues/22

○ Image distribution
https://github.com/opencontainers/image-spec/issues/15

○ Image dependencies
https://github.com/opencontainers/image-spec/issues/102

https://github.com/opencontainers/image-spec/issues/400
https://github.com/opencontainers/image-spec/issues/400
https://github.com/opencontainers/image-spec/issues/22
https://github.com/opencontainers/image-spec/issues/22
https://github.com/opencontainers/image-spec/issues/15
https://github.com/opencontainers/image-spec/issues/15
https://github.com/opencontainers/image-spec/issues/102
https://github.com/opencontainers/image-spec/issues/102

Where are we going?

● OCI Runtime Spec 1.0+
○ Live container updates?

https://github.com/opencontainers/runtime-spec/issues/17
https://github.com/opencontainers/runtime-spec/issues/305

○ Virtualisation support?
https://github.com/opencontainers/runtime-spec/pull/405

https://github.com/opencontainers/runtime-spec/issues/17
https://github.com/opencontainers/runtime-spec/issues/17
https://github.com/opencontainers/runtime-spec/issues/305
https://github.com/opencontainers/runtime-spec/issues/305
https://github.com/opencontainers/runtime-spec/pull/405
https://github.com/opencontainers/runtime-spec/pull/405

Where are we going?

Goal: Standard container
● Common image format and runtime format
● End user can just "run example.com/app"
● Identity and signing, discovery and naming,

distribution all just work

Where are we going?

Goal: Enable innovation
● Diverse ecosystem of tooling
● Build systems (CI integration, language integration)
● Runtimes (virtualisation technologies?)
● Distribution methods (torrents? IPFS?)
● Orchestration platforms (Kubernetes, Mesos, Nomad)

Where are we going?

Goal: Ubiquity through organic adoption
● Industry-standard in the container ecosystem
● Support in Kubernetes, Docker, Mesos, and more
● Magical world of interoperability!

Where are we going?

Join us!
● All OCI standards work happens in the open
● GitHub:

○ https://github.com/opencontainers/image-spec
○ https://github.com/opencontainers/runtime-spec

● Email:
○ dev@opencontainers.org

https://github.com/opencontainers/image-spec
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
mailto:dev@opencontainers.org
mailto:dev@opencontainers.org

Thank you!

Jonathan Boulle
@baronboulle | jonathan.boulle@coreos.com | coreos.com

Extra/unused slides

appc specifications

● appc tried to define the application container
story from the end-to-end UX perspective:
○ Users should be able to securely discover, download,

and run an application container with a simple
command-line (e.g. "run example.com/app")

● appc specifies two key areas:
○ image format
○ runtime environment

Image formats: a summarised history
Docker v1 appc Docker v2.2 OCI (in progress)

Introduced 2013 December 2014 April 2015 April 2016

Content-
addressable

No Yes Yes Yes

Signable No Yes, optional Yes, optional Yes, optional

Federated
namespace

Yes Yes Yes Yes

Delegatable DNS
namespace

No Yes No Yes

● Reference runtime implementation (runc)
○ Widespread production use
○ Integral part of Docker and many others

● Nascent tooling for images and runtime
○ image-tools, runtime-tools projects

OCI: other things

