
Cloud Native and
Container Technology
Landscape

Chris Aniszczyk (@cra)

Rise of Containers and Cloud Native Computing!

2

• Google running 2B+ containers per week!
– Internet scale companies are running containers too: Facebook, Twitter, Netflix, etc

• 75%+ companies are experimenting with containers!
– https://www.blackducksoftware.com/2016-future-of-open-source

• PokemonGo on containers (via Kubernetes and GCE)!
– https://cloudplatform.googleblog.com/2016/09/bringing-Pokemon-GO-to-life-on-Google-Cloud.html

https://www.blackducksoftware.com/2016-future-of-open-source
https://www.blackducksoftware.com/2016-future-of-open-source
https://cloudplatform.googleblog.com/2016/09/bringing-Pokemon-GO-to-life-on-Google-Cloud.html
https://cloudplatform.googleblog.com/2016/09/bringing-Pokemon-GO-to-life-on-Google-Cloud.html

Containers Adoption is Still Growing (But Fragmented)!

3

• Rapid growth in container adoption has led to the need to standardize,
integrate and collaborate on container technology…

• Fragmentation: Docker, rkt, Kurma, LXC/LXD, Hyperd, OpenVZ, ...

• Desire to not be bound to orchestration system, OS, arch, vendor, cloud etc…

https://www.cloudfoundry.org/wp-content/uploads/2016/06/Cloud-Foundry-2016-Container-Report.pdf

https://www.cloudfoundry.org/wp-content/uploads/2016/06/Cloud-Foundry-2016-Container-Report.pdf
https://www.cloudfoundry.org/wp-content/uploads/2016/06/Cloud-Foundry-2016-Container-Report.pdf

Lessons via Internet Scale Companies (i.e., Google)

4

• Sysadmins (Traditional Approach):

– respond to events/issues as they occur (manual work)

– grow team to absorb work as service grows

– ops is fundamentally at odds with dev (resistance to changes)

• Site Reliability Engineers [SRE] (Cloud Native Approach)

– software engineers do operations! automation vs manual labor

– SREs get bored doing manual tasks, automate them!

– culture of blameless postmortems

• Google: 1 SRE per 10000+ machines
• How did they get there?

https://landing.google.com/sre/book.html

https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html

Non-Virtualized Servers: Sun (2000)

• Launching a new application? Buy
a new server; or a rack of them!

• Building block of your application is physical
servers

5

2000

Non-
Virtualized
Hardware

Virtualization: VMWare (2001)

•Releases for server market in 2001

•Popularizes virtual machines (VMs)

•Run many VMs on one physical machine, meaning
you can buy less servers!

•Architectural building block becomes a VM

6

2000 2001

Virtualiza-
tion

Non-
Virtualized
Hardware

IaaS: AWS (2006)

•Amazon Web Services (AWS) creates the
Infrastructure-as-a-Service market by
launching Elastic Compute Cloud (EC2) in 2006

•Rent servers by the hour

•Convert CapEx to OpEx

•Architectural building block is also a VM, called
an Amazon Machine Image (AMI)

7

2000 2001 2006

Virtualiza-
tion

Non-
Virtualized
Hardware

IaaS

PaaS: Heroku (2009)

•Heroku popularizes Platform-as-a-Service (PaaS)
with their launch in 2009

•Building block is a buildpack, which enables containerized
12-factor applications

– The process for building the container is opaque, but:

– Deploying new version of an app is just: git push heroku

8

PaaSIaaS

2000 2001 2006 2009

Virtualiza-
tion

Non-
Virtualized
Hardware

Open Source IaaS: OpenStack (2010)

•OpenStack brings together an extraordinarily
diverse group of vendors to create an open source
Infrastructure-as-a-Service (IaaS)

•Competes with AWS and VMWare

•Building block remains a VM

9

Open
 Source

IaaS
PaaS

2000 2001 2006 2009 2010

Non-
Virtualized
Hardware

Virtualiza-
tion

IaaS

Open Source PaaS: Cloud Foundry (2011)

10

•Pivotal builds an open source alternative to
Heroku’s PaaS and launches the Cloud
Foundry Foundation in late 2014

•Building block is Garden containers, which can
hold Heroku buildpacks, Docker containers and
even non-Linux OSes

Open
 Source

IaaS
PaaS

Open
 Source

PaaS

2000 2001 2006 2009 2010 2011

Non-
Virtualized
Hardware

Virtualiza-
tion

IaaS

Containers

Containers: Docker (2013)

11

•Docker combines LXC, Union File System and cgroups to
create a containerization standard adopted by millions of
developers around the world

•Fastest uptake of a developer technology ever

•Enables isolation, reuse and immutability

Open
 Source

IaaS
PaaS

Open
 Source

PaaS

2000 2001 2006 2009 2010 2011

Non-
Virtualized
Hardware

2013

Virtualiza-
tion

IaaS

Containers
Cloud

 Native

CNCF and OCI (2015)

12

•Cloud native computing uses an open source

software stack to:

– deploy applications as microservices,

– packaging each part into its own container

– and dynamically orchestrating those containers to
optimize resource utilization

•Standardization: https://www.opencontainers.org/

Open
 Source

IaaS
PaaS

Open
 Source

PaaS

Virtualiza-
tion

2000 2001 2006 2009 2010 2011

Non-
Virtualized
Hardware

2013 2015

IaaS

https://www.opencontainers.org/

So… What Have We Learned?

13

• Core Building Block:
– Servers ➡ Virtual Machines ➡ Buildpacks ➡ Containers

• Isolation Units
– From heavier to lighter weight, in spin-up time and size

• Immutability
– From pets to cattle

• Provider
– From closed source, single vendor to open source, cross-vendor

OCI + CNCF in Detail

Open Container Initiative (OCI)

15

Renamed Open
Container
Initiative (OCI)

July
2015

TODAY
April
2016

Image format
project launches

June
2015

Open Container
Project is formed

Dec.
2015

Technical
governance
formed

Oct.
2016

Tools projects launch

Runtime: v1.0 RC2
Image format: v1.0 RC2

• Founded in June 2015: https://www.opencontainers.org/

• Mission: Develop and promote a set of common, minimal, open standards and
specifications around container technology (backed by a certification program)

https://www.opencontainers.org/

OCI Projects

16

• Runtime spec: a spec for managing the container runtime

• Runtime tools: tools for testing container runtimes

• Runc: runs containers (implementation of runtime-spec)

• Image spec: a container image format spec

• Image tools: tools for testing of container images
implementing the OCI image specification

https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-tools
https://github.com/opencontainers/runtime-tools
https://github.comopencontainers/runc
https://github.comopencontainers/runc
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/image-tools

OCI Projects

17

Open Image Format Spec

• Open
Specification for
Container Image

• Started with
Docker v2.2

• Announced
April 14, 2016

OCI Adopters

18

OCI Specs

https://github.com/docker/containerd

https://github.com/coreos/rkt

https://github.com/cloudfoundry/garden-runc-release

https://github.com/kubernetes-incubator/cri-o

https://issues.apache.org/jira/browse/MESOS-5011

https://github.com/docker/docker/pull/26369

https://github.com/docker/containerd
https://github.com/docker/containerd
https://github.com/coreos/rkt
https://github.com/coreos/rkt
https://github.com/cloudfoundry/garden-runc-release
https://github.com/cloudfoundry/garden-runc-release
https://github.com/kubernetes-incubator/cri-o
https://github.com/kubernetes-incubator/cri-o
https://issues.apache.org/jira/browse/MESOS-5011
https://issues.apache.org/jira/browse/MESOS-5011
https://github.com/docker/docker/pull/26369
https://github.com/docker/docker/pull/26369

OCI Contributors

19

As of 8 November, 2016

• The top 15 groups contributing to the OCI represent a
broad and diverse group of companies

• View the OCI dashboard: http://oci.biterg.io/

http://oci.biterg.io/

Cloud Native Computing Foundation (CNCF)

20

• Founded December 2015: https://www.cncf.io/

• Non-profit, part of the Linux Foundation

• Initial projects are Kubernetes, donated by Google,
and Prometheus, originally from SoundCloud

• Platinum members:

• Plus 40 additional members

https://www.cncf.io/
http://kubernetes.io/
https://prometheus.io/

Cloud Native [End User] Reference Architecture

Application Definition / Development

Orchestration & Management

Runtime

Provisioning

*Infrastructure (Bare Metal/Cloud)

•Application Definition, Composition,
Configuration, Tooling, Image Management

•Orchestration, Observability (logging, tracing),
Service Discovery, Service Management

•Container Runtime (via OCI), Container
Networking (CNI), Storage (Volume Drivers)

•Host Management (Devops Deployment Tooling
& Provisioning)

•*Out of scope for CNCF projects as we do not
define infrastructure vendors or cloud solutions
but part of reference architecture

Cloud Native Landscape (github.com/cncf/landscape)

https://github.com/cncf/landscape

https://github.com/cncf/landscape
https://github.com/cncf/landscape

Cloud Native Landscape: App Definition + Development

• Includes Languages, Frameworks, Data, SCM, App
Definition, Registry Services, CI/CD

Cloud Native Landscape: Orchestration + Management

• Orchestration: Kubernetes, Mesos, Swarm, Nomad

• Service Discovery: etcd, Consult, ZK, CoreDNS

• Service Management: linkerd, gRPC, envoy

Cloud Native Landscape: Runtime

• Storage: Minio, ClusterHQ, ceph, GlusterFS

• Container Runtime: OCI, Docker, Rkt

• Networking: Canal, CNI, weavenet, libnetwork

Cloud Native Landscape: Provisioning

• Infra Automation: Terraform, CloudFormation

• Host Management: Ansible, Chef, Puppet, Salt

• Secure Image: Clair, Twistlock

Cloud Native Landscape: Infrastructure

• AWS, GCP, Azure, Bluemix, DigitalOcean, Openstack, etc

• Note: OUT OF SCOPE for CNCF projects

CNCF Potential Projects and Community

• Potential future project areas:
– Logging (Fluentd): http://www.fluentd.org/

– Networking (CNI/Flannel/Calico/Weave): https://github.com/containernetworking/cni

– Messaging (NATS): http://nats.io/

– Configuration (etcd): https://github.com/coreos/etcd

– Storage (Minio): https://github.com/minio/

– RPC (GRPC): http://www.grpc.io/

– Tracing (OpenTracing, OpenZipkin): http://opentracing.io/

– Streaming (Heron): http://heronstreaming.io

– ...and more! https://github.com/cncf/toc#scheduled-community-presentations

http://www.fluentd.org/
https://github.com/containernetworking/cni
http://nats.io/
https://github.com/coreos/etcd
https://github.com/minio/
http://www.grpc.io/
http://opentracing.io/
http://heronstreaming.io
https://github.com/cncf/toc#scheduled-community-presentations

Cloud Native
Value Propositions

30

Isolation

Container packaged applications achieve dev/prod parity, foster
code and component reuse and simplify operations

No Lock-in

Open source software stack enables deployment on any
public or private cloud (or in combinations)

Unlimited Scalability

Optimized for modern distributed systems environments
capable of scaling to tens of thousands of self healing
multi-tenant nodes
(e.g., Google starts 2 billion containers per week)

Improved Efficiency and Resource Utilization

Via a central orchestrating process that dynamically
manages and schedules microservices. This reduces the
costs associated with maintenance and operations.

Resiliency

To failures of individual containers, machines, and even
data centers and to varying levels of demand

Hosting with the CNCF?

Software Foundations in a Post-GitHub World

36

• No one is impressed today by a software repo, mailing list,
or website

• Foundations need to offer a different set of services

• CNCF’s goal is to be the best place to host cloud native
software projects

Why You Should Host Your Project at CNCF

37

•Neutral home increases contributions

•Endorsement by CNCF’s Technical
Oversight Committee

•Priority access to $15 million, 1000
node Community Cluster

•Engagement with End User Board

•Full-time press relation and analyst
relation teams

•$20 K per year to improve your
project documentation

•Maintain your committers; just agree
to unbiased process

•Full-time staff eager to assist

•World-class events team, track at
CloudNativeCon/KubeCon around
the world, and custom events for your
project

•Worldwide meetup groups and Cloud
Native Roadshows

•Inclusion in the CNCF marketing
demo

https://github.com/cncf/demo
https://github.com/cncf/demo

Why You Should
Join the CNCF and OCI?

Help Set the Direction of Cloud Native and Containers!

• Participate in our hosted projects and attend our
events and roadshows!

• Design your applications and services to work with
a cloud native platform of orchestrated containers
of microservices

• Become a member of the Cloud Native Computing
Foundation (CNCF): https://cncf.io/join

• Become a member of the Open Container Initiative
(OCI): https://opencontainers.org/join

• Contact: cra@linuxfoundation.org

39

https://cncf.io/join
https://cncf.io/join
https://opencontainers.org/join
mailto:cra@linuxfoundation.org

Thank you! Q&A?
@cra

Extra Slides

CNCF Members

CNCF Governance Structure

CNCF Member Companies (50+)

Governing Board

Craig McCluckie (Google) [chair]
Alexis Richardson (Weaveworks) [TOC chair]

Val Bercovici (NetApp)
Jonathan Donaldson (Intel)

Brian Goff (Docker)
Scott Hammond (Joyent)

Peixin Hou (Huawei)
Kenji Kaneshige (Fujitsu)

Mathew Lodge (Weaveworks)
Jason Mendenhall (Supernap / Switch)

Todd Moore (IBM)
Kenneth Owens (Cisco)

Alex Polvi (CoreOS)
Sinclar Schuller (Apprenda)

Mark Thiele (Apcera)
Aaron Williams (Mesosphere)

Chris Wright (Red Hat)

Technical Oversight
Committee

Alexis Richardson
(Weaveworks) [TOC chair]
Jonathan Boulle (CoreOS)

Bryan Cantrill (Joyent)
Camille Fournier (Independent)

Brian Grant (Google)
Benjamin Hindman (Mesosphere)

Solomon Hykes (Docker)
Ken Owens (Cisco)

End User Technical
Advisory Board

7 representatives from
the End User

Community and 1
elected TOC member

(Working to Create)

LF Leadership

Application Definition / Development
Orchestration & Management

Runtime
Provisioning

Infrastructure (Bare Metal/Cloud)

Cloud Native Reference Architecture

• Application Definition,
Composition, configuration, and
reuse

• Development Frameworks

• Tooling

• CI/CD

• Image Management (Registry,
governance, policy)

Application Definition/ Deployment Layer

Application Definition/ Development
Orchestration & Management

Runtime
Provisioning

Infrastructure (Bare Metal/Cloud)

• Observability
• View / Filter / Replay
• Monitoring / Trace / Stream / Log
• Business Intelligence

• Orchestration and scheduling

• Name resolution and service
discovery (e.g., DNS)

• Service Management
• Routing / Proxy / Load Balancer
• Policy / Placement / Traffic

Management

Orchestration & Management Layer

Application Definition/ Development
Orchestration & Management

Runtime
Provisioning

Infrastructure (Bare Metal/Cloud)

• Resource Management
• Image Management
• Container Management
• Compute Resources

• Cloud Native – Network
• Network Segmentation and Policy
• SDN & APIs (e.g., CNI, libnetwork)

• Cloud Native- Storage

• Volume Drivers/Plugins

• Local Storage Management

• Remote Storage Access

Runtime Layer

Application Definition/ Development
Orchestration & Management

Runtime
Provisioning

Infrastructure (Bare Metal/Cloud)

Note: Container runtime and
format are adopted from OCI

https://www.opencontainers.org/

• Host Management

• Secure OS Images

• Host level Devops Deployment
Tooling & Provisioning

• Infrastructure Automation
• Compute

• Network

• Storage

Provisioning Layer

Application Definition/ Development
Orchestration & Management

Runtime
Provisioning

Infrastructure (Bare Metal/Cloud)

• Out of scope for CNCF projects
as we do not define infrastructure
vendors or cloud solutions but
part of reference architecture

• Potentially in the future we will
provide “certification”

Infrastructure (Bare Metal/Cloud) Layer

Application Definition/ Development
Orchestration & Management

Runtime
Provisioning

Infrastructure (Bare Metal/Cloud)

