
Securing Open Source Software
Through Strong Governance

Dr. Nicko van Someren
Executive Director, Core Infrastructure Initiative

2014 – Heartbleed

The Linux Foundation
forms the Core
Infrastructure Initiative

 with support from 19 Industry Giants

Core Infrastructure Initiative Mission

▪  The CII aims to substantially improve security outcomes
in the FOSS projects that underpin the Internet

▪  The CII funds work in security engineering, security
architecture, tooling, testing and training on key FOSS
projects, as well as supporting general development on
security-specific projects (such as crypto libraries)

Ensuring Strong Security Processes

▪  Think about security at every step of the
process: architecture, implementation,
testing, documentation, distribution and
deployment

▪  It is not sufficient to have a strong
Secure Development Lifecycle (SDLC)
policy; you need governance and
leadership to ensure that people follow it

Security Is Hard For Open or Closed
Source - These Are Complex Systems

FOSS Security Is Different

FOSS is not more or less secure, but it is different
•  Typically there are many more people contributing
•  Sometimes (often?) there is a culture of “code is

more important than specification”
•  Processes are often more ad hoc
•  There may be less market pressure to put security

first

Linus’s Law: “Given enough eyeballs, all
bugs are shallow.”

▪  Peer review is one of the

best tools available for
ensuring code and designs
are secure, and FOSS does
peer review very effectively

Why FOSS Security Can Be The Best

What Does Good Security Governance Look Like?
▪  Good security governance

requires checks and
balances

▪  Security needs to be hard
wired into a project, not
layered on

▪  Security should start before
coding starts
•  Security is a process, not

a discrete feature.

Get All Project Members to
Buy Into The Process

Good Security Governance

▪  Can and should be a living document
▪  Consistent coding style makes errors easier to spot
▪  Ask all contributors to identify their security assumptions
▪  Documentation must describe how to do a secure

deployment
•  Yes, you’re going to need documentation!

▪  Enforce architecture and code review processes

Setting Security as a Priority

▪  Most structural security failures happen because
developers didn’t stop to think about security, not
because they thought about it but missed something

▪  At some level, having a policy about security process
and following it is more important than the details of the
policy itself

▪  Making security a priority in the project direction and
keeping the issues top of mind helps a huge amount

Multi-party Code Review is Critical

▪  Most vulnerabilities come
about because an attacker
found a way to violate
assumptions made by the
developer

▪  Design, then design review,
coding, then code review helps
a great deal at spotting false
assumptions

Tracking Code Provenance is Crucial

▪  From a security standpoint, it is very important to know
not only who wrote a piece of code but also who
reviewed it

▪  Tools for tracking code provenance can also be used for
tracking code reviews

▪  Ideally a project should be able to know not only who
wrote each line of code but who authorised the pull into
the trunk

The Role of Technical Advisory Boards

▪  As with finding bugs in code, it’s often hard to find bugs
in your own processes

•  “We’re used to doing it this way” is all too common
▪  Your TAB should be constantly reexamining your

security process to make sure that it still meets your
needs

▪  TAB members may be have valuable insights about real-
world deployment that help improve threat models

▪  At least one TAB member should be a security maven

The CII Best Practice Badge

More Than 40 Best Practice Badge Holders

CII Best Practice Badge Program

▪  The CII Best Practice Badge Program is a self-
assessment process for checking that your FOSS project
has good security practices

▪  The project is itself open source, both for the code that
implements the questionnaire and the set of questions
that make up the criteria

▪  The projects self-assess. The answers are public. The
community polices the accuracy of these answers.

CII Best Practice Criteria

▪  Currently about 70 questions
•  Most are required, some are suggested or marked as

future requirements
▪  Answers filled in on a web form. Private until complete;

public once a badge is achieved.
▪  Much of the form-filling is automated is the code is on

GitHub (adding other repositories soon)
▪  Questions are grouped into categories

CII Best Practice Criteria

▪  Criteria categories include:
•  Defined contribution policies and guidelines
•  Documentation completeness
•  Change control process and checks
•  Bug and vulnerability reporting
•  Testing, test coverage and quality process
•  Crypto and security-specific design
•  Automated security analysis and testing

OpenSSL: A Governance Case Study

After Heartbleed, CII started
funding the OpenSSL team

▪  Worked with them to improve the security governance
•  Formal code review requirements
•  Formal policies for change control
•  Formal policies on bug handling
•  More collaborative architecture review
•  Efforts to ensure policies were followed

Successes with OpenSSL Governance

▪  Bugs are found faster and
closed faster

▪  More progress on security
roadmap items

▪  New release policies mean
security updates are being
deployed more quickly

Conclusions

▪  It is much easier to achieve good security outcomes with
a sound Secure Development Life Cycle in place

▪  The SDLC will only be effective if people are watching to
make sure that it is adhered to

▪  The technical leadership of a project needs to set an
example and apply pressure when it is not followed

▪  None of this is rocket science!
•  It just needs buy-in from the community

